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To DIANE

We started rambling through the hills together
Then we decided to ramble through life together
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Preface to the
Revised Edition

Since writing the preface of the first edition of this work, the gloomy plight
there described of beginning collegiate geometry has brightened considerably.
The pendulum seems definitely to be swinging back and a goodly amount of
excellent textual material is appearing.

The widespread use of the first volume of our work has called forth the
present revision. While this revised edition is essentially like the first edition,
opportunity has been taken for making a great number of small improvements
and a few larger changes. Among the larger changes has been the rewriting
of certain sections, such as those on isometries, similarities, the method of
loci, and metamathematics. Another pronounced change has been the split-
ting of many former sections into shorter ones, so that any section taken in
class can be comfortably covered in one 50-minute class session. A third
major change has been the amplification, by a factor of three or four, of the
hints and suggestions for the solution of the problems.

The book is very rich and one cannot hope to cover all the sections in even
a year course meeting three hours a week. A number of sections were not
written for class coverage, anyway, but rather for the interested student seek-
ing material for a term paper or for “junior” research. Among these sections
are 2.7, 3.11, 4.4, 4.7, 4.8, 5.5, 5.6, 5.8, 6.5, 6.6, 7.7, 7.8, 8.6, 8.7, 8.8, 8.9.
Other sections, a selection of which might be similarly treated, are 1.5, 1.6,

Xi



1.7, 4.5, 4.6, 5.4, 5.7, 6.9, 7.6, 8.5. The instructor may, of course, wish to
comment in class on the contents (without going into proofs) of some of the
omitted sections. All in all, there is a good deal of room for an instructor to
exercise personal preference and to vary the course from year to year.

Xii  Preface to the Revised Edition



Preface to the
First Edition

The undergraduate college textbook situation in geometry today is much like
what it was in algebra just prior to 1940.

Before 1940 there was scarcely any textual material available in English
for introducing college undergraduate mathematics students to the vast and
rich area of so-called modern algebra. True, there were a few books in the
area, but these either were written for the graduate student or tended to con-
centrate on only certain facets of modern algebra and did not constitute any-
thing like a true survey of the subject. Then, in 1941, appeared the magnificent
Birkhoff-MacLane A4 Survey of Modern Algebra, and the undergraduate
mathematics student was furnished a textbook that gave him a glimpse into
most of the important areas of modern algebra. Here was a text designed for a
single course in which the student was able to gain a good idea of the nature
of such topics as group theory, vector spaces, matrix algebra, linear groups,
determinants, Boolean algebra, transfinite arithmetic, rings and ideals, alge-
braic number fields, and Galois theory — topics any one of which can easily
be extended into a full course of its own. Oriented by this textbook in the
entire area of modern algebra, a student interested in algebra can see where
his preferences lie and can go on to more detailed courses on selected topics
of his choosing.
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Today we have a dozen or more good undergraduate textbooks of modern
algebra, and introductory courses in modern algebra based on these text-
books are now offered in practically every college and university of the
country — a situation quite different from that of some twenty or more
years ago, when only a few institutions gave such courses, and these, not from
easily-available textbooks, but from hard-to-obtain sets of notes.

There are some excellent textbooks available today on specialized areas of
geometry, such as college geometry, projective geometry, non-Euclidean
geometry, analytic geometry, differential geometry, topology, and so on, and
there are some so-called introductions to higher geometry, which, however,
largely concentrate on projective geometry, or on the foundations of geome-
try, or on advanced methods in analytic geometry, or on some other particular
field of geometric study. But there is a real dearth of anything like a true sur-
vey of the subject that can be used in the undergraduate classroom.

What we need is a text that might do for geometry what the Birkhoff-
MacLane text of 1941 did for algebra. The time for such a venture in America
seems ripe, for after several decades of general neglect, there appears to be
stirring a revived interest in the venerable subject of geometry. Without want-
ing in any way to appear presumptuous, the present text is humbly offered
from this viewpoint.

In writing the book, much trouble was encountered in deciding what to
include and what to leave out, and easily five times the material of the final
work was written before ruthless weeding and pruning reduced the thing to a
sensible size. Replies to a letter to a number of eminent geometers and teach-
ers seemed to indicate that there should be chapters on historical origins,
modern elementary (or college) geometry, elementary transformation theory,
Euclidean constructions, the dissection of areas and volumes, projective
geometry, non-Euclidean geometry, the foundations of geometry, analytic
geometry, the Erlanger programm, limit operations in geometry, plane curves,
differential geometry, combinatorial topology, n-dimensional geometry, and
abstract spaces. There was no great unanimity of opinion as to just what
topics each chapter should cover, but there was a unanimous request that the
book be truly geometric in spirit, and not merely a treatment of some algebra
couched in geometric terminology. A number of the correspondents expressed
the hope that the book would lay some emphasis on geometric method, and
would not be just a compendium of geometric facts.

Finally, a development in some sixteen chapters with six or seven sub-
sections per chapter, all sewed together with a generous and varied supply of
problems, was decided upon. Because, to satisfy the varying desires of differ-
ent instructors, more material was included than could normally be covered,
and because geometrical exposition necessarily requires more space than most
other mathematical exposition, it seemed wise to split the complete work into
two separately bound parts, or volumes, each part to supply an instructor
with ample material for a three-hour one-semester course. It was decided to
make the later chapters of each part somewhat independent of one another,
thus allowing the instructor to choose from them and to cover as many

Preface to the First Edition



sections of them as desired. It also seemed wise to make the first part of the
work synthetic and relatively elementary, and to reserve analytical considera-
tions and most of the more advanced and abstract portions of the subject for
the second part.

It is perhaps pertinent to make a comment or two here about the problems
of the text. There is a distinction between what may be called a problem and
what may be considered an exercise. The latter serves to drill a student in
some technique or procedure, and requires little, if any, original thought.
Thus, after a student beginning algebra has encountered the quadratic for-
mula, he should undoubtedly be given a set of excrcises in the form of specific
quadratic equations to be solved by the newly acquired tool. The working of
these exercises will help clinch his grasp of the formula and will assure his
ability to use the formula. An exercise, then, can always be done with reason-
able dispatch and with a minimum of creative thinking. In contrast to an
exercise, a problem, if it is a good one for its level, should require thought
on the part of the student. The student must devise strategic attacks, some
of which may fail, others of which may partially or completely carry him
through. He may need to look up some procedure or some associated material
in texts, so that he can push his plan through. Having successfully solved a
problem, the student should reconsider it to see if he can devise a different
and perhaps better solution. He should look for further deductions, generali-
zations, applications, and allied results. In short, he should live with the thing
for a time, and examine it carefully in all lights. To be suitable, a problem
must be such that the student cannot solve it immediately. One does not com-
plain about a problem being too difficult, but rather too easy.

It is impossible to overstate the importance of problems in mathematics. It
is by means of problems that mathematics develops and actually lifts itself by
its own bootstraps. Every research article, every doctoral thesis, every new
discovery in mathematics, results from an attempt to solve some problem.
The posing of appropriate problems, then, appears to be a very suitable way
to introduce the promising student to mathematical research. And, it is worth
noting, the more problems one plays with, the more problems one may be
able to propose on one’s own. The ability to propose significant problems is
one requirement to be a creative mathematician.

There are relatively few exercises in this work, but many and assorted
problems of varying degrees of difficulty. Problems are an integral part of
geometry, for one learns geometry chiefly by doing it. There is a lot of very
interesting geometry introduced through the problems, and a student will
miss much if he does not dip into this material. Some of the problems are not
at all easy for a beginner, and, to allay frustration and alleviate insomnia, a
collection of suggestions for the solution of many of the problems appears
towards the end of each volume.

A short bibliography will be found at the conclusion of each chapter, and
an enterprising student may care to start a deeper study of some material of
the chapter with one of these references.

Preface to the First Edition
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The Fountainhead

1.1 The Earliest Geometry - 1.2 The Empirical
Nature of Pre-Hellenic Geometry - 1.3 The Greek
Contribution of Material Axiomatics - 1.4 Euclid’s
“Elements” - 1.5 The Geometrical Contributions of
Euclid and Archimedes - 1.6 Apollonius and Later
Greek Geometers - 1.7 The Transmission of Greek
Geometry to the Occident - 1.8 The Case for
Empirical, or Experimental, Geometry

This first chapter is introductory in nature and is designed to serve two
purposes. In the first place, it describes the source from which essentially
all geometrical investigations of the modern era have arisen. This makes
possible, in the succeeding chapters, an analysis of the origins of the funda-
mental ideas there introduced—an analysis without which neither a true
understanding nor a genuine appreciation of those ideas is possible.

In the second place, this first chapter serves somewhat in the nature of
a review for the reader who has been too long away from his elementary
geometry. Before discussing the advances of the modern era, the reader is
given a chance to recall and revive some of the basic concepts and termi-
nology that were considered in his high school geometry course, and lacking
which it would be rather foolhardy to proceed. This ability to feel one’s
way around again can best be acquired by working a fair sample of the
problems that appear at the ends of the various sections of the chapter.

1.1 THE EARLIEST GEOMETRY

The first geometrical considerations of man are unquestionably very ancient,
and would seem to have their origin in simple observations stemming from
human ability to recognize physical form and to compare shapes and sizes.



There were innumerable circumstances in the life of even the most primitive
man that would lead to a certain amount of subconscious geometric dis-
covery. The notion of distance was undoubtedly one of the first geometrical
concepts to be developed. The estimation of the time needed to make a
journey led very early to the realization that the straight line constitutes the
shortest path from one point to another; indeed, most animals seem instinc-
tively to realize this. The need to bound land led to the notion of simple
geometric figures, such as rectangles, squares, and triangles. In fact, it seems
natural, when fencing a piece of land, first to fix the corners and then to
join these by straight lines. Other simple geometrical concepts, such as the
notion of vertical, of parallel, and of perpendicular, would have been sug-
gested by the construction of walls and dwellings.

Many observations in the daily life of early man must have led to the
conception of curves, surfaces, and solids. Instances of circles were numerous
—for example, the periphery of the sun or the moon, the rainbow, the seed
heads of many flowers, and the cross-section of a log. Shadows cast by sun
or lamp would reveal circles and conic sections. A thrown stone describes
a parabola; an unstretched cord hangs in a catenary curve; a wound rope
lies in a spiral; spider webs illustrate regular polygons. The growth-rings of
a tree, the swelling circles caused by a pebble cast into a pond, and figures
on certain shells suggest the idea of families of curves. Many fruits and
pebbles are spherical, and bubbles on water are hemispherical; some bird
eggs are approximately ellipsoids of revolution; a ring is a torus; tree trunks
are circular cylinders; conical shapes are frequently seen in nature. Early
potters made many surfaces and solids of revolution. The bodies of men
and animals, most leaves and flowers, and certain shells and crystals illus-
trate the notion of symmetry. The idea of volume arises immediately in the
consideration of receptacles to hold liquids and other simple commodities.

Examples like the above can be multiplied almost indefinitely. Physical
forms which possess an ordered character, contrasting as they do with the
haphazard and unorganized shapes of most bodies, necessarily attract the
attention of a reflective mind—and some elementary geometric concepts are
brought to light. Such geometry might, for want of a better name, be called
subconscious geometry. This subconscious geometry was employed by very
early man in the making of decorative ornaments and patterns, and it is
probably quite correct to say that early art did much to prepare the way
for later geometric development. The evolution of subconscious geometry
in little children is well known and easily observed.

Now, in the beginning, man considered only concrete geometrical problems,
which presented themselves individually and with no observed intercon-
nections. When human intelligence was able to extract from a concrete
geometrical relationship a general abstract relationship containing the former
as a particular case, geometry became a science. In this capacity, geometry
has the advantage of ordering practical problems into sets such that the
problems in a set can be solved by the same general procedure. One thus
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arrives at the notion of a geometrical law or rule. For example, comparing
the lengths of circular courses with their diameters would lead, over a period
of time, to the geometrical law that the ratio of circumference to diameter
is a constant.

There is no evidence which permits us to estimate the number of centuries
that passed before man was able to raise geometry to the status of a science,
but all the writers of antiquity who concerned themselves with this matter
unanimously agree upon the Nile valley of ancient Egypt as the place where
subconscious geometry first became scientific geometry. The famous Greek
historian Herodotus (ca. 485 B.c.—ca. 425 B.C.) has stated the thesis in this
wise:

They said also that this king [Sesostris] divided the land among all Egyptians
so as to give each one a quadrangle of equal size and to draw from each his
revenues, by imposing a tax to be levied yearly. But every one from whose part
the river tore away anything, had to go to him and notify what had happened. He
then sent the overseers, who had to measure out by how much the land had
become smaller, in order that the owner might pay on what was left, in propor-
tion to the entire tax imposed. In this way, it appears to me, geometry originated,
which passed thence to Hellas.

Thus the traditional account finds in early Egyptian surveying practices the
beginnings of geometry as a science; indeed, the word ‘‘ geometry’ means
‘“measurement of the earth.” While we cannot be certain of this origin, it
does seem safe to assume that scientific geometry arose from practical neces-
sity, appearing several thousand years before our era in certain areas of the
ancient orient as a science to assist in engineering, agriculture, business, and
religious ritual. There is historical evidence that this occurred not only along
the Nile River of Egypt, but also in other great river basins, such as the
Tigris and Euphrates of Mesopotamia, the Indus and Ganges of south-
central Asia, and the Hwang Ho and the Yangtze of eastern Asia. These
river basins cradled advanced forms of society known for their engineering
prowess in marsh drainage, irrigation, flood control, and the erection of
great edifices and structures. Such projects required the development of
much practical geometry.

1.2 THE EMPIRICAL NATURE OF PRE-HELLENIC
GEOMETRY

As far back as history allows us to grope into the past, we still find present
a sizeable body of material that can be called practical, or scientific, geometry.

The earliest existing records of man’s activity in the field of geometry are
some inscribed baked clay tablets unearthed in Mesopotamia and believed
to date, in part at least, from Sumerian times of about 3000 B.c. There are
other generous supplies of Babylonian cuneiform tablets coming from later
periods, such as the First Babylonian Dynasty of King Hammurabi’s era,
the New Babylonian Empire of Nebuchadnezzar, and the following Persian
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and Selucidan eras. From these tablets we see that ancient Babylonian
geometry is intimately related to practical mensuration. Numerous concrete
examples show that the Babylonians of 2000 to 1600 B.c. were familiar with
the general rules for computing the area of a rectangle, the areas of right
and isosceles triangles (and perhaps the general triangle), the area of the
special trapezoid having one side perpendicular to the parallel sides, the
volume of a rectangular parallelepiped, and, more generally, the volume of
a right prism with special trapezoidal base. The circumference of a circle
was taken as three times the diameter, and the area as one-twelfth the square
of the circumference (both correct for = = 3), and the volume of a right
circular cylinder was then obtained by finding the product of the base and
the altitude. The volume of a frustum of a cone or of a square pyramid
appears incorrectly as the product of the altitude and half the sum of the
bases. There also seems to be evidence that the ancient Babylonians used the
incorrect formula

K=(a+c)b+d)4

for the area of a quadrilateral having a, b, ¢, d for consecutive sides. These
peoples knew that corresponding sides of two similar right triangles are
proportional, that the altitude through the vertex of an isosceles triangle
bisects the base, and that an angle inscribed in a semicircle is a right angle.
The Pythagorean Theorem was also known, even as far back as approxi-
mately 2000 B.C. There is a recently discovered tablet in which 3} is used as
an estimate for .

Our chief sources of information concerning ancient Egyptian geometry
are the Moscow and Rhind papyri, mathematical texts containing 25 and
85 problems respectively, and dating from approximately 1850 B.c. and
1650 B.C. There is also, in the Berlin Museum, the oldest extant astronomical
or surveying instrument—a combination plumb line and sight rod—which
comes from the ancient Egypt of about 1950 B.Cc. The Berlin Museum also
possesses an Egyptian sundial dating from about 1500 B.cC., and which is the
oldest sundial in existence. These instruments reveal, of course, a knowledge
at the times of some associated practical geometry. One should also point
out that the great pyramid of Gizeh, whose very careful construction cer-
tainly involved some practical geometry, was erected about 2900 B.C.

Twenty-six of the 110 problems in the Moscow and Rhind papyri are
geometric. Most of these problems stem from mensuration formulas needed
for computing land areas and granary volumes. The area of a circle is taken
as equal to that of the square on § of the diameter, and the volume of a
right cylinder as the product of the area of the base by the length of the
altitude. Recent investigations seem to show that the ancient Egyptians
knew that the area of any triangle is given by half the product of base and
altitude. Some of the problems seem to concern themselves with the co-
tangent of the dihedral angle between the base and a face of a pyramid,
and others show an acquaintance with the elementary theory of similar
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figures. Although there is no documentary evidence that the ancient Egyp-
tians were aware of the Pythagorean Theorem, early Egyptian surveyors
realized that a triangle having sides of lengths 3, 4, and 5 units is a right
triangle. It is curious that the incorrect formula

K=(a+ )b+ d)4

for the area of an arbitrary quadrilateral with successive sides of lengths
a, b, ¢, d appears in an inscription found in the tomb of Ptolemy XI, who
died in 51 B.C.

Very remarkable is the existence in the Moscow papyrus of a numerical
example of the correct formula for the volume of a frustum of a square
pyramid,

V = h(a® + ab + b?)/3,

where 4 is the altitude and a and b are the lengths of the sides of the two
square bases. No other unquestionably genuine example of this formula has
been found in pre-Hellenic mathematics, and since its proof demands some
form of integral calculus, its discovery must certainly be regarded as an
extraordinary piece of induction. E. T. Bell has aptly referred to this early
Egyptian achievement as the ““ greatest Egyptian pyramid.”

Very likely, mathematical accomplishments similar to those of ancient
Egypt and Babylonia also occurred in ancient India and China, but we
know very little indeed with any degree of certainty about those accomplish-
ments. The ancient Egyptians recorded their work on stone and papyrus,
the latter fortunately resisting the ages because of Egypt’s unusually dry
climate, and the Babylonians used imperishable baked clay tablets. In con-
trast to the use of these media, the early Indians and Chinese used very
perishable writing materials like bark bast and bamboo. Thus it has come
to pass that we have a fair quantity of definite information, obtained from
primary sources, about the mathematics of ancient Egypt and Babylonia,
while we know very little about the study in ancient India and China.

It is interesting to note that in all pre-Hellenic mathematics we do not
find a single instance of what we today call a logical demonstration. In place
of a general argument there is merely a step-by-step description of some
process applied to particular numerical cases. Beyond some very simple
considerations, the mathematical relations employed by the early Egyptians
and Babylonians resulted essentially from “trial and error” methods, with
the result that many of their formulas are incorrect. In other words, pre-
Hellenic mathematics was little more than a practically workable empiricism
—a collection of rule-of-thumb procedures that gave results of sufficient
acceptability for the simple needs of those early civilizations. Mathematics,
and geometry in particular, appears as a laboratory study.

Empirical reasoning may be described as the formulation of conclusions
based upon experience and observation; no real understanding is involved,
and the logical element does not appear. Empirical reasoning often entails
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stodgy fiddling with special cases, observation of coincidences and the
frequent employment of analogy, experience at good guessing, considerable
experimentation, and flashes of intuition.

In spite of the empirical nature of pre-Hellenic mathematics, with its
complete neglect of proof and the seemingly little attention paid to the
difference between exact and approximate truth, one is nevertheless struck
by the extent and diversity of the problems successfully attacked. Apparently
a great deal of elementary mathematical truth can be discovered by empirical
methods when supplemented by extensive experimentation carried on
patiently over a long period of time.

PROBLEMS
1. Show that the ancient Babylonian formula
K= (a+ )b + d)/4,

for the area of a quadrilateral having a, b, ¢, d for consecutive sides, gives too
large an answer for all nonrectangular quadrilaterals.

2. Interpret the following, found on a Babylonian tablet believed to date from
about 2600 B.C.:
“60 is the circumference, 2 is the perpendicular, find the chord.”
“Thou, double 2 and get 4, dost thou not see? Take 4 from 20, thou gettest
16. Square 20, thou gettest 400. Square 16, thou gettest 256. Take 256 from 400,
thou gettest 144. Find the square root of 144. 12, the square root, is the chord.
Such is the procedure.”

3. Given a and b as the legs of aright triangle, Babylonian geometers approximated
the hypotenuse ¢ by the formula ¢ = a + (b?/2a). Justify this approximation
by using the Pythagorean relation and the binomial theorem.

4. In the Rhind papyrus the area of a circle is taken as equal to that of a square
on & of the circle’s diameter. Show that this is equivalent to taking = = (%)*
= 3.1604 . ...

5. Solve the following two problems found in the Moscow papyrus:
(a) The area of a rectangle is 12, and the width is § of the length, what are the
dimensions?
(b) One leg of a right triangle is 24 times the other, the area is 20, what are the
dimensions?

6. (a) In the Moscow papyrus we find the following numerical example: ‘If
you are told: A truncated pyramid of 6 for the vertical height by 4 on the base
by 2 on the top. You are to square this 4, result 16. You are to double 4, result 8.
You are to square 2, result 4. You are to add the 16, the 8, and the 4, result 28.
You are to take one third of 6, result 2. You are to take 28 twice, result 56. See,
it is 56. You will find it right.”

Show that this illustrates the general formula

V = h(a® + ab + b?)/3,
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10.

giving the volume of a frustum of a square pyramid in terms of the height &
and the sides a and b of the bases. (This problem constitutes the so-called
““ greatest Egyptian pyramid.”)

(b) Assuming the familiar formula for the volume of any pyramid (volume
equals one third the product of base and altitude), show that the volume of a
frustum of a pyramid is given by the product of the height of the frustum and
the heronian mean of the bases of the frustum. (If m and n are two positive
numbers, then H = (m + v/mn + n)/3 is called the heronian mean of the two
numbers.)

. The Sulvasitras, ancient Hindu religious writings dating from about 500 B.c.,

are of interest in the history of mathematics because they embody certain
geometrical rules for the construction of altars that show an acquaintance
with the Pythagorean Theorem. Among the rules furnished there appear
empirical solutions of the circle-squaring problem which are equivalent to
taking d = (2 + +/2)s/3 and s = 13d/15, where d is the diameter of the circle
and s is the side of the equivalent square. These formulas are equivalent to
taking what values for =?

. The Hindu mathematician Aryabhata wrote early in the sixth century A.D.

His work is a poem of 33 couplets called the Ganira. Following are translations

of two of the couplets:

(1) The area of a triangle is the product of the altitude and half the base;

half of the product of this area and the height is the volume of the solid of

six edges.

(2) Half the circumference multiplied by half the diameter gives the area of the

circle; this area multiplied by its own square root gives the volume of the sphere.
Show that, in each of these couplets, Aryabhata is correct in two dimensions

but wrong in three. We note that Hindu mathematics remained empirical

long after the Greeks had introduced the deductive feature.

. (@) An early Chinese work, dating probably from the second century B.cC.,

which had considerable influence on the development of mathematics in China
was the K’ui-ch’ang Suan-Shu, or Arithmetic in Nine Sections. In this work we
find the empirical formula s(c + 5)/2 for the area of a circular segment of
chord ¢ and depth s. Obtain a correct formula in terms of these quantities.
(b) Solve the following problem found in the Chinese Arithmetic in Nine Sections :

There grows in the middle of a circular pond 10 feet in diameter a reed which
projects one foot out of the water. When it is drawn down it just reaches the
edge of the pond. How deep is the water?

(a) There are reports that ancient Egyptian surveyors laid out right angles by
constructing 3—4-5 triangles with a rope divided into 12 equal parts by 11 knots.
Show how this can be done.

(b) Since there is no documentary evidence to the effect that the Egyptians
were aware of even a particular case of the Pythagorean Theorem, the following
purely academic problem arises: Show, without using the Pythagorean Theorem,
its converse, or any of its consequences, that the 3-4-5 triangle is a right triangle.
Solve this problem by means of Figure 1.2a, which appears in the Chdu-pei,
the oldest known Chinese mathematical work, which may date back to the
second millennium B.C.

1.2 The Empirical Nature of Pre-Hellenic Geometry



Figure 1.2a

1.3 THE GREEK CONTRIBUTION OF MATERIAL
AXIOMATICS

The economic and political changes of the last centuries of the second
millennium B.C. caused the power of Egypt and Babylonia to wane, new
peoples came to the fore, and it happened that the further development of
geometry passed over to the Greeks. The extent of the debt of Greek ge-
ometry to ancient oriental geometry is difficult to estimate, nor is the path
of transmission from the one to the other yet satisfactorily uncovered. That
the debt is considerably greater than formerly believed has become evident
with the twentieth-century researches on Babylonian and Egyptian records.
Early Greek writers themselves expressed respect for the wisdom of the East
and this wisdom was available to anyone who could travel to Egypt and
Babylonia.

But, whatever the strength of the historical connection between Greek
and ancient oriental geometry, the Greeks transformed the subject into
something vastly different from the set of empirical conclusions worked out
by their predecessors. The Greeks insisted that geometric fact must be
established, not by empirical procedures, but by deductive reasoning; geo-
metrical conclusions must be arrived at by logical demonstration rather than
by trial-and-error experimentation. Geometrical truth is to be attained in
the study room rather than in the laboratory. In short, the Greeks trans-
formed the empirical, or scientific, geometry of the ancient Egyptians and
Babylonians into what we might call deductive, demonstrative, or systematic
geometry.

It is disappointing that, unlike the study of ancient Egyptian and Baby-
lonian geometry, there exist virtually no primary sources for the study of
early Greek geometry. We are forced to rely upon manuscripts and accounts
that are dated several hundred years after the original treatments had been
written. In spite of this situation, however, scholars of classicism have been
able to build up a rather consistent, though somewhat hypothetical, account
of the history of early Greek geometry. This work required amazing ingenuity
and patience; it was carried through by painstaking comparisons of derived
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texts and by examination of countless literary fragments and scattered
remarks made by later authors, philosophers, and commentators.

Our principal source of information concerning very early Greek geometry
is the so-called Eudemian Summary of Proclus. This summary constitutes a
few pages of Proclus’ Commentary on Euclid, Book I, and is a very brief
outline of the development of Greek geometry from the earliest times to
Euclid. Although Proclus lived in the fifth century A.D., a good thousand
years after the inception of Greek geometry, he still had access to a number
of historical and critical works which are now lcst to us except for the
fragments and allusions preserved by him and others. Among these lost
works is what was apparently a full history of Greek geometry, covering
the period prior to 335 B.C., written by Eudemus, a pupil of Aristotle. The
Eudemian Summary is so named because it is admittedly based upon this
earlier work.

According to the Eudemian Summary, Greek geometry appears to have
started in an essential way with the work of Thales of Miletus in the first
half of the sixth century B.C. This versatile genius, declared to be one of the
““seven wise men”’ of antiquity, was a worthy founder of systematic geometry,
and is the first known individual with whom the use of deductive methods
in geometry is associated. Thales, the summary tells us, sojourned for a time
in Egypt and brought back geometry with him to Greece, where he began
to apply to the subject the deductive procedures of Greek philosophy. He
is credited with a number of very elementary geometrical results, the value
of which is not to be measured by their content but rather by the belief that
he supported them with a certain amount of logical reasoning instead of
intuition and experiment. For the first time a student of geometry was
committed to a form of deductive reasoning, partial and incomplete though
it may have been. Moreover, the fact that the first deductive thinking was
done in the field of geometry, instead of algebra for instance, inaugurated a
tradition in mathematics which was maintained until very recent times.

The next outstanding Greek mathematician mentioned in the Eudemian
Summary is Pythagoras, who is claimed to have continued the systemization
of geometry that was begun some fifty years earlier by Thales. Pythagoras
was born about 572 B.C., on the island of Samos, one of the Aegean islands
near Thales’ home city of Miletus, and it is quite possible that he studied
under the older man. It seems that Pythagoras then visited Egypt and per-
haps traveled even more extensively about the ancient orient. When, on
returning home, he found Ionia under Persian dominion, he decided to
migrate to the Greek seaport of Crotona in southern Italy. Here he founded
the celebrated Pythagorean school, a brotherhood knit together with secret
and cabalistic rites and observances, and committed to the study of philos-
ophy, mathematics, and natural science.

In spite of the mystical nature of much of Pythagorean study, the members
of the society contributed, during the two hundred or so years following
the founding of their organization, a good deal of sound mathematics. Thus,

1.3 The Greek Contribution of Material Axiomatics
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in geometry, they developed the properties of parallel lines and used them
to prove that the sum of the angles of any triangle is equal to two right
angles. They contributed in a noteworthy manner to Greek geometrical
algebra, and they developed a fairly complete theory of proportion, though
it was limited only to commensurable magnitudes, and used it to deduce
properties of similar figures. They were aware of the existence of at least
three of the regular polyhedral solids, and they discovered the incommen-
surability of a side and a diagonal of a square. Although much of this
information was already known to the Babylonians of earlier times, the
deductive aspect of mathematics is thought to have been considerably ex-
ploited and advanced in this work of the Pythagoreans. Chains of proposi-
tions in which successive propositions were derived from earlier ones in the
chain began to emerge. As the chains lengthened, and some were tied to
others, the bold idea of developing all of geometry in one long chain sug-
gested itself. It is claimed in the Eudemian Summary that a Pythagorean,
Hippocrates of Chios, was the first to attempt, with at least partial success,
a logical presentation of geometry in the form of a single chain of propositions
based upon a few initial definitions and assumptions. Better attempts were’
made by Leon, Theudius, and others. And then, about 300 B.c., Euclid
produced his epoch-making effort, the Elements, a single deductive chain
of 465 propositions neatly and beautifully comprising plane and solid
geometry, number theory, and Greek geometrical algebra. From its very
first appearance this work was accorded the highest respect, and it so quickly
and so completely superseded all previous efforts of the same nature that
now no trace remains of the earlier efforts. The effect of this single work
on the future development of geometry has been immense and is difficult
to overstate, as will be amply attested in subsequent chapters of our book.
In the next section we shall consider in some detail the contents of this
magnificent work; in the remainder of this section we comment on its
remarkable form.

At some time between Thales in 600 B.c. and Euclid in 300 B.C. was
developed the notion of a logical discourse as a sequence of statements
obtained by deductive reasoning from a set of initial statements assumed at
the outset of the discourse. Certainly, if one is going to present an argument
by deductive procedure, any statement of the argument will have to be
derived from some previous statement or statements of the argument, and
such a previous statement must itself be derived from some still more previous
statement or statements. Clearly this cannot be continued backward in-
definitely, nor should one resort to illogical circularity by deriving a state-
ment B from a statement A, and then later deriving statement A from
statement B. The way out of this difficulty, the Greeks felt, is to set down,
at the start of the argument, a collection of primary statements whose truths
are acceptable to the reader, and then to proceed, by purely deductive
reasoning, to derive all the other statements of the discourse.

Now both the primary and derived statements of the discourse are state-
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ments about the technical matter of the discourse, and hence involve special
or technical terms. These terms need to be defined. Since technical terms
must be defined by means of other technical terms, and these other technical
terms by means of still others, one is faced with a difficulty similar to that
encountered with the statements of the discourse. In order to get started,
and to avoid circularity of definition where term y is defined by means of
term x, and then later term x by means of term y, one is again forced to
set down at the very start of the discourse a collection of basic technical
terms whose intended meanings should be made clear to the reader. All
subsequent technical terms of the discourse must then be defined by means
of technical terms already introduced.

An argument which is carried out according to the above plan is today
said to be developed by material axiomatics. Certainly the most outstanding
contribution of the early Greeks to mathematics was the formulation of the
pattern of material axiomatics and the insistence that mathematics be sys-
tematized according to this pattern. Euclid’s Elements is the earliest exten-
sively developed example of the use of the pattern that has come down to us.
In more recent times, as we shall see in a later chapter, the pattern of material
axiomatics has been very significantly generalized to yield a more abstract
form of argument known as formal axiomatics. For the time being we
content ourselves by summarizing the pattern of material axiomatics.

Pattern of Material Axiomatics

(A) Initial explanations of certain basic technical terms of the discourse
are given, the intention being to suggest to the reader what is to be
meant by these basic terms.

(B) Certain primary statements concerning the basic terms, and which
are felt to be acceptable as true on the basis of the properties sug-
gested by the initial explanations, are listed. These primary statements
are called the axioms, or the postulates, of the discourse.

(C) All other technical terms of the discourse are defined by means of
previously introduced terms.

(D) All other statements of the discourse are logically deduced from
previously accepted or established statements. These derived state-
ments are called the theorems of the discourse.

PROBLEMS

1. There are two versions of how Thales, when in Egypt, evoked admiration by
calculating the height of a pyramid by shadows. The earlier account, given
by Hieronymus, a pupil of Aristotle, says that Thales determined the height
of the pyramid by measuring the shadow it cast at the moment a man’s shadow
was equal to his height. The later version, given by Plutarch, says that he set
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up a stick and then made use of similar triangles. Both versions fail to mention
the difficulty, in either case, of obtaining the length of the shadow of the pyramid
—that is, the distance from the apex of the shadow to the center of the base of
the pyramid.

Devise a method, based on similar triangles and independent of latitude and
time of year, for determining the height of a pyramid from two shadow observa-
tions.

2. (a) The early Pythagoreans are credited with the origination of the so-called
figurate numbers. These numbers, considered as the number of dots in certain
geometrical configurations, represent a link between geometry and arith.netic.
Figures 1.3a, 1.3b, and 1.3c account for the geometrical nomenclature of

Triangular numbers

etc.
VAN
1 3 6 10 etc.
Figure 1.3a

Square numbers -~ o

etc.
L]
1 4 9 16 etc.
Figure 1.3b

Pentagonal numbers

Q etc.
[ ]

1 5 12 22 etc.
Figure 1.3c

triangular numbers, square numbers, pentagonal numbers, and so on. Many
intef‘esting theorems concerning figurate numbers can be established in purely
geometric fashion. Show that Figures 1.3d, 1.3e, 1.3f, respectively, prove
the theorems:
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Figure 1.3d

Figure 1.3e

Figure 1.3f

I. Any square number is the sum of two successive triangular numbers. 11. The nth
pentagonal number is equal to n plus three times the (n-1)th triangular number.
III. The sum of any number of consecutive odd integers, starting with 1, is a
perfect square.

(b) Prove, geometrically, that eight times any triangular number, plus 1, is a
square number.

(c) Find algebraic expressions for the nth triangular, square, and pentagonal
numbers, and use these expressions to obtain algebraic proofs of the theorems
in parts (a) and (b).

(d) An oblong number is the number of dots in a rectangular array of dots
having one more column than rows. Show both geometrically and algebraically
that: 1. The sum of the first n positive even integers is an oblong number. 11. Any
oblong number is twice a triangular number.

. (a) Tradition is unanimous in ascribing to Pythagoras the independent discovery
of the theorem on the right triangle which now universally bears his name—
that the square on the hypotenuse of a right triangle is equal to the sum of the
squares on the legs. We have noted that this theorem was known to the Baby-
lonians of Hammurabi’s time, over a thousand years earlier, but the first
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general proof of the theorem may have been given by Pythagoras. There has
been much conjecture as to the proof Pythagoras might have offered, and it is
generally felt that it probably was a dissection type of proof such as is suggested
by Figure 1.3g. Supply the proof.

Figure 1.3g B

(Since Pythagoras’ times, many different proofs of the Pythagorean Theorem
have been supplied. In the second edition of his book The Pythagorean Prop-
osition, E. S. Loomis has collected and classified 370 demonstrations of this
famous theorem.)

(b) State and prove the converse of the Pythagorean Theorem.

4. Show that there can be no more than five regular polyhedra.

5. (a) Prove that 4/2 is not a rational number.
(b) Show that a side and a diagonal of a square are incommensurable (that is,
have no common unit of measure).
(c) Prove that the straight line through the points (0,0) and (1,4/2) of a rec-
tangular Cartesian coordinate system passes through no point, other than
(0,0), of the coordinate lattice.
(d) Show how the coordinate lattice may be used to find rational approxi-
mations of /2.

6. Assuming the equality of alternate interior angles formed by a transversal
cutting a pair of parallel lines, prove the following:
(a) The sum of the angles of a triangle is equal to a straight angle.
(b) The sum of the interior angles of a convex polygon of n sides is equal to
n — 2 straight angles.

7. Assuming the area of a rectangle is given by the product of its two dimensions,
establish the following chain of theorems:
(a) The area of a parallelogram is equal to the product of its base and alti-
tude.
(b) The area of a triangle is equal to half the product of any side and the altitude
on that side.
(c) The area of a right triangle is equal to half the product of its two legs.
(d) The area of a triangle is equal to half the product of its perimeter and the
radius of its inscribed circle.
(e) The area of a trapezoid is equal to the product of its altitude and half the
sum of its bases.
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(f) The area of a regular polygon is equal to half the product of its perimeter
and its apothem.

(g) The area of a circle is equal to half the product of its circumference and
its radius.

8. Assuming (1) A central angle of a circle is measured by its intercepted arc,
(2) The sum of the angles of a triangle is equal to a straight angle, (3) The base
angles of an isosceles triangle are equal, (4) A tangent to a circle is perpendicular
to the radius drawn to the point of contact, establish the following chain of
theorems:

(a) An exterior angle of a triangle is equal to the sum of the two remote
interior angles.

(b) An inscribed angle in a circle is measured by one half its intercepted arc.
(c) An angle inscribed in a semicircle is a right angle.

(d) An angle formed by two intersecting chords in a circle is measured by one
half the sum of the two intercepted arcs.

(e) An angle formed by two intersecting secants of a circle is measured by
one half the difference of the two intercepted arcs.

(f) An angle formed by a tangent to a circle and a chord through the point of
contact is measured by onc half the intercepted arc.

(g) An angle formed by a tangent and an intersecting secant of a circle is
measured by one half the difference of the two intercepted arcs.

(h) An angle formed by two intersecting tangents to a circle is measured by
one half the difference of the two intercepted arcs.

9. As a simple example of a discourse conducted by material axiomatics, consider
a certain (finite and nonempty) collection S of people and certain clubs formed
among these people, a club being a (nonempty) set of people organized for
some common purpose. Our basic terms are thus the collection S of people
and the clubs to which these people belong. About these people and their clubs
we assume:

POSTULATE 1. Every person of S is a member of at least one club.

POSTULATE 2. For every pair of people of S there is one and only one club
to which both belong.

DEerFINITION. Two clubs having no members in common are called conjugate
clubs.

PosTULATE 3. For every club there is one and only one conjugate club.

From these postulates deduce the following theorems:

THEOREM 1. Every person of S is a member of at least two clubs.
THEOREM 2. Every club contains at least two members.

THEOREM 3. S contains at least four people.

THEOREM 4. There exist at least six clubs.

The persevering student may care to try to establish the following much
more difficult theorem.
THEOREM 5. No club contains more than two members.
10. Using the same basic terms as in Problem 9, let us assume:

POSTULATE 1. Any two distinct clubs have one and only one member in
common.
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POSTULATE 2. Every person in S belongs to two and only two clubs.
POSTULATE 3. There are exactly four clubs.

From these postulates deduce the following theorems:

THEOREM 1. There are exactly six people in S.

THEOREM 2. There are exactly three people in each club.

THEOREM 3. For each person in S there is exactly one other person in S not
in the same club.

1.4 EUCLID'S ELEMENTS

Whoever even casually pages through a copy of Euclid’s Elements, is bound
to realize that, notwithstanding certain imperfections, he is examining one
of the foremost works ever compiled. This treatise by Euclid is rightfully
regarded as the first great landmark in the history of mathematical thought
and organization. No work, except the Bible, has been more widely used,
edited, or studied. For more than two millennia it has dominated all teaching
of geometry, and over a thousand editions of it have appeared since the
first one was printed in 1482. As the prototype of the modern mathematical
method, its impact on the development of mathematics has been enormous,
and a surprising number of important subsequent developments in geometry
owe their origin and inspiration to some part or feature of this great work.

It is no detraction that Euclid’s work is largely a compilation of works
of predecessors, for its chief merit lies precisely in the consummate skill
with which the propositions were selected and arranged in a logical sequence
presumably following from a small handful of initial assumptions. Nor is
it a detraction that the searchlight of modern criticism has revealed certain
defects in the structure of the work; it would be very remarkable indeed if
such an early and colossal attempt by the axiomatic method should be free
of blemishes.

No copy of Euclid’s Elements actually dating from the author’s time has
been found. The modern editions of the Elements are based upon a revision
prepared by Theon of Alexandria almost 700 years after the original work
had been written. It was not until the beginning of the nineteenth century
that an older copy, showing only minor differences from Theon’s recension,
was discovered in the Vatican library. A careful study of citations and
commentary by early writers indicates that the initial definitions, axioms,
and postulates of the original treatise differed some from the revisions, but
that the propositions and their proofs have largely remained as Euclid wrote
them.

In the thirteen books that comprise Euclid’s Elements there is a total of
465 propositions. Contrary to popular impression, many of these proposi-
tions are concerned, not with geometry, but with number theory and with
Greek (geometrical) algebra.

Book I commences, of course, with the necessary preliminary definitions,
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postulates, and axioms. Though today mathematicians use the words
“axiom” and ‘““postulate” synonymously, most of the early Greeks made
a distinction, the distinction adopted by Euclid perhaps being that an axiom
is an initial assumption common to all studies, whereas a postulate is an
initial assumption pertaining to the study at hand. The 48 propositions of
Book I fall into three groups. The first 26 deal mainly with properties of
triangles and include the three well-known congruence theorems. Proposi-
tions I 27* through I 32 establish the theory of parallels and prove that the
sum of the angles of a triangle is equal to two right angles. The remaining
propositions of the book deal with parallelograms, triangles, and squares,
with special reference to area relations. Proposition I 47 is the Pythagorean
Theorem, and the final proposition, I 48, is the converse of the Pythagorean
Theorem. The material of this book was developed by the early Pythagoreans.

Book II deals with the transformation of areas and the Greek geometrical
algebra of the Pythagorean school. It is in this book that we find the geo-
metrical equivalents of a number of algebraic identities. At the end of the
book are two propositions which establish the generalization of the Pythag-
orean Theorem that we today refer to as the ‘“law of cosines.”

Book III contains those familiar theorems about circles, chords, tangents,
and the measurement of associated angles which we find in our high school
geometry texts.

In Book IV are found discussions of the Pythagorean constructions, with
straightedge and compasses, of regular polygons of three, four, five, six,
and fifteen sides.

Book V gives a masterly exposition of the theory of proportion as origi-
nated by Eudoxus. It was this theory, which is applicable to incommensurable
as well as commensurable magnitudes, that resolved a ‘““logical scandal”
created by the Pythagorean discovery of irrational numbers. Prior to the
discovery of irrational numbers it was intuitively felt that any two line
segments are commensurable, and the Pythagorean treatment of proportion
was built on this false premise. The Eudoxian theory of proportion later
provided a foundation, developed by Richard Dedekind in the late nine-
teenth century, for the real number system of analysis. Present-day high
school geometry tests do not employ the Eudoxian theory, but rather the
earlier Pythagorean theory completed by some elementary limit theory.

Book VI applies the Eudoxian theory of proportion to plane geometry.
Here we find the fundamental theorems on similar triangles and constructions
giving third, fourth, and mean proportionals. We also find a geometrical
solution of quadratic equations, and the proposition that the internal bi-
sector of an angle of a triangle divides the opposite side into segments
proportional to the other two sides. There probably is no theorem in this
book that was not known to the early Pythagoreans, but the pre-Eudoxian
proofs of many of them were at fault since they were based upon an in-
complete theory of proportion.

* By I 27 is meant Proposition 27 of Book 1.
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Books VII, VIII, and IX, containing a total of 102 propositions, deal
with elementary number theory. In these books are many beautiful theorems
about the natural numbers, but, since we are here concerned only with
geometry, we forgo any discussion of them.

Book X deals with irrationals, that is, with line segments which are in-
commensurable with respect to some given line segment. Many scholars
regard this book as perhaps the most remarkable in the Elements. Much of
the subject matter of this book is believed due to Theaetetus, but the
extraordinary completeness, elaborate classification, and finish are usually
credited to Euclid. It taxes one’s credulity to realize that the results of this
book were arrived at by rhetorical reasoning unassisted by any convenient
algebraic notation.

The remaining three books, XI, XII, and XIII, concern themselves with
solid geometry, covering most of the material, with the exception of much
of that on spheres, commonly found in high school texts today. The defini-
tions, the theorems about lines and planes in space, and theorems concerning
parallelepipeds are found in Book XI. Volumes are cleverly treated in Book
XII, and constructions of the five regular polyhedra are given in Book XIII.

The traditional American high school texts in plane and solid geometry
contain material on rectilinear figures, circles, proportion and similar figures,
regular polygons, lines and planes in space, volumes of solids, and the sphere.
Except for most of the work on spheres, this is largely the material of Euclid’s
Books I, III, IV, VI, XI, and XII. The material in current high school texts
concerning the measurement of the circle and the sphere, and the material
dealing with spherical triangles, is of later origin and is not found in the
Elements.

The reader will find listed in Appendix I Euclid’s initial definitions,
postulates, and axioms, and the statements of the propositions of his Book I.
This material will be referred to later.

PROBLEMS

1. By the “elements” of a deductive study the Greeks meant the leading, or key,
theorems which are of wide and general use in the subject. Their function has
been compared to that of the letters of the alphabet in relation to language; as a
matter of fact, letters are called by the same name in Greek. The selection of
the theorems to be taken as the elements of the subject requires the exercise of
some judgement. If you were to choose two of the following theorems for
“elements” of a course in plane geometry, which would you choose?

(1) The three altitudes of a triangle, produced if necessary, meet in a point.
(2) The sum of the three angles of a triangle is equal to two right angles.
(3) An angle inscribed in a circle is measured by half its intercepted arc.

(4) The tangents drawn from any point on the common chord produced of
two given intersecting circles are equal in length.
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. A geometry teacher is going to present the topic of parallelograms to her class.
After defining parallelogram, what theorems about parallelograms should the
teacher offer as the ‘‘ elements ” of the subject?

. Preparatory to teaching the topic on similar figures, a geometry teacher gives
a lesson or two on the theory of proportion. What theorems should she select
for the “elements” of the treatment, and in what order should she arrange
them?

. Consider the following four statements, called, respectively, the direct statement,
the converse statement, the inverse statement, and the contrapositive statement:
(1) All g are b. (2) All b are a. (3) All non-a are non-b. (4) All non-b are non-a.
(a) Show that the direct and contrapositive statements are equivalent.

(b) Show that the converse and inverse statements are equivalent.

(c) Taking “ All parallelograms are quadrilaterals,”” as the direct statement,
give the converse, inverse, and contrapositive statements.

. (@) Prove the theorem: If a triangle is isosceles, then the bisectors of its base
angles are equal.

(b) Try to prove the converse of the theorem in part (a). (This converse is
known as the Steiner-Lehmus Theorem and is not so easy to establish.)

. (a) How does the modern definition of a circle differ from Euclid’s definition?
(b) How many of the forty-eight propositions of Euclid’s Book I are con-
structions?

(c) A construction can be regarded as an existence theorem. Explain this.

7. Show that the ““law of cosines ’ is a generalization of the Pythagorean Theorem.

. Indicate how each of the following algebraic identities might be established
geometrically, assuming a, b, ¢, d are positive quantities.

(@) (@ + b)? = a® + 2ab + b

(b) (@ — b)> = a®> — 2ab + b%, a> b

© a*—b>=(@+ba—b>b), a>b

(d) a(b + ¢) = ab + ac

@) (@a+ b)>=(a—b)*>+ 4ab, a> b

f) (@ + b)(c + d)=ac + bc + ad + bd

. (a) Let r and s denote the roots of the quadratic equation

I

x2 — px + g% =0,

where p and g are positive numbers. Show that r + s = p, rs = ¢3, and r
and s are both positive if ¢ < p/2.

(b) To solve the quadratic equation of part (a) geometrically for real roots,
we must find line segments r and s from given line segments p and g. That is,
we must construct a rectangle equivalent to a given square and having the
sum of its base and altitude equal to a given line segment. Devise a suitable con-
struction based on Figure 1.4a, and show geometrically that for real roots to
exist we must have g < p/2.

(c) Let r and s denote the roots of the quadratic equation

x? —px —q* =0,

where p and q are positive numbers. Show that r + s = p, rs = —g2, the roots
are real, and the numerically larger one is positive while the other is negative.
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Figure 1.4a

P

(d) To solve the quadratic equation of part (c) geometrically, we must find
line segments r and s from given line segments p and ¢g. That is, we must
construct a rectangle equivalent to a given square and having the difference of
its base and altitude equal to a given line segment. Devise a suitable construction
based on Figure 1.4b.

Figure 1.4b

(e) Devise constructions for geometrically solving for real roots the quadratic
equations x2 + px + q> =0 and x? + px — q?> = 0, where p and ¢ are
positive numbers.

(f) Given a unit segment, geometrically solve the quadratic equation

x2 —T7x + 10 = 0.
(g) Given a unit segment, geometrically solve the quadratic equation
x2 —4x - 21 =0.

(h) With straightedge and compass, divide a segment m into two parts such
that the difference of their squares shall be equal to their product.

(i) Show that, in part (h), the longer segment is a mean proportional between
the shorter segment and the whole segment. (The line segment is said to be
divided in extreme and mean ratio, or in golden section.)

10. Important in Greek geometrical algebra is the Pythagorean theory of transform-
ing an area from one rectilinear shape into another rectilinear shape. The
Pythagorean solution of the basic problem of constructing a square equal in
area to that of a given polygon may be found in Propositions 42, 44, 45 of
Book I and Proposition 14 of Book II of Euclid’s Elements. A simpler solution,
probably also known to the Pythagoreans, is the following. Consider any
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polygon ABCD - - - with a projecting vertex B (see Figure 1.4c). Draw BR
parallel to AC to cut DC in R. Then, since triangles ABC and ARC have a
common base AC and equal altitudes on this common base, these triangles
have equal areas. It follows that polygons ABCD - - - and ARD - - - have equal
areas. But the derived polygon has one fewer sides than the given polygon.
By a repetition of this process we finally obtain a triangle having the same area
as the given polygon. Now if b is any side of this triangle and A the altitude on b,
the side of an equivalent square is given by V/(bh)/2, that is, by the mean
proportional between b and A/2. Since this mean proportional is easily con-
structed with straightedge and compass, the entire problem can be carried out
with these tools.

Figure 1.4c

D C

Many interesting area problems can be solved by the above simple process
of drawing parallel lines.
(a) Draw an irregular hexagon and then construct, with straightedge and
compass, a square having the same area.
(b) With straightedge and compass divide a quadrilateral ABCD into three
equivalent parts by straight lines drawn through vertex A.
(c) Bisect a trapezoid by a line drawn from a point P in the smaller base.
(d) Transform triangle ABC so that the angle A4 is not altered, but the side
opposite angle A becomes parallel to a given line MN.
(e) Transform a given triangle into an isosceles triangle having a given vertex
angle.

1.5 THE GEOMETRICAL CONTRIBUTIONS OF EUCLID
AND ARCHIMEDES

Euclid, Archimedes, and Apollonius mark the apogee of Greek geometry,
and it is no exaggeration to say that almost every significant subsequent
geometrical development, right up to and including the present time, finds
its origin in some work of these three great scholars. Since a genuine under-
standing of fundamental ideas is scarcely possible without some analysis of
origins, it is pertinent to our study to consider, at least briefly, the geo-
metrical accomplishments of these three men.

Of Euclid and his Elements we have already written at some length. Very
little is known about the life of Euclid except that he was perhaps the first

1.5 The Geometrical Contributions of Euclid and Archimedes

21



professor of mathematics at the famed University of Alexandria, and the
father of the illustrious and long-lived Alexandrian School of Mathematics.
Even his dates and his birthplace are not known, but it seems probable that
he received his mathematical training in the Platonic school at Athens.

Though Euclid’s Elements is by far his most influential work, indeed the
most influential single work in geometry in the entire history of the subject,
he did write several other geometrical treatises, some of which have survived
to the present day. One of the latter, entitled the Data, is concerned with
material of the first six books of the Elements. A datum may be defined as
a set of parts of a figure such that if all but one are given, then that remaining
one is determined. Thus the parts A4, a, R of a triangle, where A is one angle,
a the opposite side, and R the circumradius, constitute a datum, for, given
any two of these parts, the third is thereby determined. This is clear either
geometrically or from the relation a = 2R sin A. It is apparent that a col-
lection of data of this sort could be useful in the analysis which precedes the
discovery of a construction or a proof, and this is undoubtedly the purpose
of the work.

Another work in geometry by Euclid, which has come down to us through
an Arabian translation, is the book On Divisions. Here we find construction
problems requiring the division of a figure by a restricted straight line so
that the parts will have areas in a prescribed ratio. An example is the problem
of dividing a given triangle into two equal areas by a line drawn through a
given point in the plane of the triangle.

Other geometrical works of Euclid that are now lost to us, and are known
only from later commentaries, are the Pseudaria, or book of geometrical
fallacies, Porisms, a relatively deep work about which there has been con-
siderable speculation, Conics, a treatise in four books which was later
completed and then added to by Apollonius, and Surface Loci, perhaps a
treatise on surfaces of double curvature but about which nothing really
certain is known. These works tend to show that Euclid delved considerably
deeper into geometry than just the material of the Elements.

Euclid’s other works concern applied mathematics, and two of these are
extant: the Phaenomena, dealing with the spherical geometry required for
observational astronomy, and the Optics, an elementary treatise on perspec-
tive. Euclid is supposed also to have written a work on the Elements of Music.

One of the very greatest mathematicians of all time, and certainly the
greatest of antiquity, was Archimedes, a native of the Greek city of Syracuse
on the island of Sicily. He was born about 287 B.c. and died during the Roman
pillage of Syracuse in 212 B.c. There is a report that he spent time in Egypt,
in all likelihood at the University of Alexandria, for he numbered among
his friends Conon, Dositheus, and Eratosthenes; the first two were successors
of Euclid, the last was a librarian, at the University. Many of Archimedes’
mathematical discoveries were communicated in letters to these men.

The works of Archimedes are not compilations of achievements of pre-
decessors, but are highly original creations. They are masterpieces of mathe-
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matical exposition and resemble to a remarkable extent, because of their
high finish, economy of presentation, and rigor in demonstration, the articles
found in present-day research journals. Some ten treatises have come down
to us and there are various traces of lost works. Probably the most important
contribution made to mathematics in these works is Archimedes’ anticipation
of some of the methods of the integral calculus.

Three of Archimedes’ extant works are devoted to plane geometry. They
are Measurement of a Circle, Quadrature of the Parabola, and On Spirals.
It was in the first of these that Archimedes inaugurated the classical method
of computing n. To simplify matters, suppose we choose a circle with unit
diameter. Then the length of the circumference of the circle is n. Now the
length of the circumference of a circle lies between the perimeter of any
inscribed polygon and that of any circumscribed polygon. Since it is a simple
matter to compute the perimeters of the regular inscribed and circumscribed
six-sided polygons, we easily obtain bounds for . Now there are formulas
which tell us how, from the perimeters of given regular inscribed and cir-
cumscribed polygons, we may obtain the perimeters of the regular inscribed
and circumscribed polygons having twice the number of sides. By successive
applications of this process, starting with the regular inscribed and circum-
scribed six-sided polygons, we can compute the perimeters of the regular
inscribed and circumscribed polygons of 12, 24, 48, and 96 sides, in this
way obtaining ever closer bounds for n. This is essentially what Archimedes
did, finally obtaining the fact that = lies between 222 and 27, or that, to two
decimal places, n is given by 3.14. This procedure of Archimedes was the
start in the long history of securing ever more accurate approximations for
the number n, reaching in 1967 the fantastic accuracy of 500,000 decimal
places.

In the Quadrature of the Parabola, which contains 24 propositions, it is
shown that the area of a parabolic segment is % that of the inscribed triangle
having the same base and having its opposite vertex at the point where the
tangent is parallel to the base. The summation of a convergent geometric
series is involved. The work On Spirals contains 28 propositions devoted to
properties of the curve which is now known as the spiral of Archimedes
and which has r = k0 for a polar equation. In particular, the area enclosed
by the curve and two radii vectors is found essentially as would be done
today as a calculus exercise.

There are allusions to lost works on plane geometry by Archimedes, and
there is reason to believe that some of the theorems of these works have
been preserved in the Liber assumptorum, or Book of Lemmas, a collection
which has reached us through the Arabic. One Arabian writer claims that
Archimedes was the discoverer of the celebrated formula

K =Vs(s — a)(s — b)(s — ¢)

for the area of a triangle in terms of its three sides. This formula is found
in a later work of Heron of Alexandria.
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Two of Archimedes’ extant works are devoted to geometry of three
dimensions, namely On the Sphere and Cylinder and On Conoids and Spheroids.
In the first of these, written in two books and containing a total of 60 prop-
ositions, appear theorems giving the areas of a sphere and of a zone of
one base and volumes of a sphere and of a segment of one base. In Book II
appears the problem of dividing a sphere by a plane into two segments
whose volumes shall be in a given ratio. This problem leads to a cubic
equation whose solution is not given in the text as it has come down to us,
but was found by Eutocius in an Archimedean fragment. There is a dis-
cussion concerning the conditions under which the cubic may have a real
and positive root. Similar considerations do not appear again in mathematics
for over a thousand years. The treatise On Conoids and Spheroids contains
40 propositions, which are concerned chiefly with an investigation of the
volumes of quadrics of revolution. In this work we find a derivation of the
formula A = nab for the area of an ellipse having semiaxes a and b. Pappus
has ascribed to Archimedes 13 semiregular polyhedra, but unfortunately
Archimedes’ own account of them is lost.*

There is a geometrical assumption explicitly stated by Archimedes in his
work On the Sphere and Cylinder which deserves special mention; it is one
of the five geometrical postulates assumed, in addition to those of Euclid,
at the start of Book I of the work and it has become known as the Postulate
of Archimedes. A simple statement of the postulate is as follows: Given two
unequal line segments, there is always some finite multiple of the shorter one
which is longer than the other. In some modern treatments of geometry this
postulate serves as part of the postulational basis for introducing the concept
of continuity. It is a matter of interest, to be looked into later, that in the
nineteenth and twentieth centuries geometric systems were constructed which
deny the Archimedean postulate, thus giving rise to so-called non-Archi-
medean geometries. Although named after Archimedes, it is only fair to
point out that this postulate had been considered earlier by Eudoxus.

There are two extant treatises by Archimedes on applied mathematics,
On the Equilibrium of Planes and On Floating Bodies. It is interesting that
in these works on mechanics, Archimedes employed the axiomatic method.
The physical postulates that must be assumed in addition to the axioms and
postulates of geometry are first laid down, and the properties then carefully
deduced. It was not until the sixteenth-century work of Simon Stevin that
the science of statics and the theory of hydrostatics were appreciably
advanced beyond the points reached by Archimedes.

Archimedes wrote two related essays on arithmetic, but these, being
foreign to geometry, will not be considered here.

One of the most thrilling discoveries of modern times in the history of

* Construction patterns for the Archimedean solids, and for many other polyhedral

solids, can be found in Miles C. Hartley, Patterns of Polyhedra, rev. ed. (Ann Arbor,
Mich.: Edwards Brothers, 1957).
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mathematics was the discovery by Heiberg, in Constantinople, as late as
1906, of Archimedes’ long lost treatise entitled Method. This work is in the
form of a letter addressed to Eratosthenes and is important because of the
information it furnishes concerning a ‘““method” which Archimedes used
to discover many of his theorems. Although the ‘method” can today be
made rigorous by modern integration processes of the calculus, Archimedes
used the “method” only to discover results, which he then established
rigorously by his extension of the Eudoxian method of exhaustion.

PROBLEMS

1. Let A, B, C denote the angles of a triangle; a, b, ¢ the opposite sides; h, , hs , h.
the altitudes on these sides; m,, m,, m. the medians to these sides; t., t, ?.
the angle bisectors drawn to these sides; R and r the circumradius and inradius;
b, and c, the projections of b and ¢ on side a; and r, the radius of the circle
touching side a and sides b and ¢ produced. Show that each of the following
constitutes a datum:

(@) A, B, C (b) a/b, b/c, cla
(c) b, A, h. d) b+ c, A, hy + he
€ b—-c A, h.— hy ) hay, ta, B— C
(g) haama,ba -- Ca (h) R,B— C,ba_cn
(i) Ryrao—r,a G) ha, 1, ra

2. Construct a triangle given (for notation see Problem 1 above):
(a) a’Ayhb+hc (b)a—‘b,hb+hc,A
©) R, r, h,

3. (a) Complete the details of the following solution (essentially found in Euclid’s
work On Divisions) of the problem of constructing a straight line GH passing
through a given point D within triangle ABC, cutting sides B4 and BC in G
and H respectively, and such that triangles GBH and ABC have the same area
(see Figure 1.5a).

Draw DE parallel to CB to cut AB in E. Denote the lengths of DE and EB
by k& and k respectively, and that of GB by x. Then x(BH) = ac. But BH/h

Figure 1.5a
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= x/(x — k). Eliminating BH we obtain x> — mx + mk = 0, where m = ac/h,
etc., by Problem 9(b) Section 1.4.

(b) Solve the following problem, which is Proposition 28 in Euclid’s work On
Divisions: In Figure 1.5b, bisect the area 4 BEC by a straight line drawn through
the midpoint E of the circular arc BC.

Figure 1.5b

A
E
4. (a) If ais the side of a regular polygon inscribed in a circle of radius r, show that

b = [2r2 — r(4r? — g?)1/21/2

is the side of a regular inscribed polygon having twice the number of sides.
(b) If a is the side of a regular polygon circumscribed about a circle of radius ,
find a formula for the side b of a regular circumscribed polygon having twice the
number of sides.

5. Let pi and ai denote the perimeter and the area of a regular k-gon inscribed in
a given circle C, and let P, and A, denote the perimeter and the area of a regular
k-gon circumscribed about the circle C. Show that
(a) P2n = 2Pn Pn/(pn + Pn) (b) Dan = (pn Pzn)l/2
©) azn = (an A)''? (d) Azn = 2620 Auf(azn + An)

6. Try to develop, by the synthetic methods of high school geometry, the following
chain of theorems concerning the parabola.

DEFINITIONS. A parabola is the locus of a point that moves in a plane so that
its distance from a fixed point in the plane, called the focus of the parabola, is
always equal to its distance from a fixed line in the plane, called the directrix of
the parabola. The midpoint of the perpendicular from the focus to the directrix
is called the vertex of the parabola; the line through the focus and perpendicular
to the directrix is called the axis of the parabola; the length of the chord of the
parabola through the focus and perpendicular to the axis is called the latus
rectum of the parabola. If P is any point on the parabola, F the focus, V the
vertex, and M the foot of the perpendicular from P on the axis, then the lengths
FP, VM, MP are respectively called the focal radius, the abscissa, and the
ordinate of the point P.

THEOREM 1. The vertex of a parabola lies on the parabola.
THEOREM 2. The latus rectum is equal to 4(VF).

THEOREM 3. The ordinate at any point on the parabola is the mean proportional
between the latus rectum and the abscissa of the point.
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THEOREM 4. Every point on the concave side of the parabola is nearer to the
Socus than to the directrix; every point on the convex side of the parabola is farther
from the focus than from the directrix.

THEOREM 5. If'P is a point on the parabola, then the bisector of the angle between
PF and the perpendicular from P to the directrix is the tangent to the parabola
at the point P.

THEOREM 6. If the tangent to the parabola at point P cuts the axis in point T
and the normal to the parabola at P cuts the axis in point N, then TF = FP,
TV = VM, and FN = half the latus rectum.

THEOREM 7. The foot of the perpendicular from F on the tangent to the parabola
at a point P on the curve lies on the tangent to the parabola at V.

THEOREM 8. The line joining the focus to the intersection of two tangents makes
equal angles with the focal radii drawn to the points of contact.

THEOREM 9. The tangents drawn through the ends of a focal chord intersect on
the directrix.

THEOREM 10. If two tangents are drawn from a point to a parabola, the line
through the point and parallel to the axis bisects the chord of contact.

THEOREM 11. If two tangents are drawn from a point to a parabola, and through
the point the line parallel to the axis is drawn to cut the parabola in S, then the
tangent at S is parallel to the chord of contact.

THEOREM 12. The locus of the midpoints of a family of parallel chords is a
straight line parallel to the axis of the parabola.

THEOREM 13. The area of a parabolic segment made by a chord is two-thirds
the area of the triangle formed by the chord and the tangents drawn through the
ends of the chord.

. The Liber assumptorum, or Book of Lemmas, contains some elegant geometrical
theorems credited to Archimedes. Among them are some properties of the
“arbelos” or ‘“shoemaker’s knife.”” Let 4, C, B be three points on a straight
line, C lying between 4 and B. Semicircles are drawn on the same side of the
line and having AC, CB, AB as diameters. The ‘“ arbelos >’ is the figure bounded
by these three semicircles. At C erect a perpendicular to 4B to cut the largest
semicircle in G. Let the common external tangent to the two smaller semicircles
touch these curves at 7 and W. Denote AC, CB, AB by 2ry, 2r,, 2r. Establish
the following elementary properties of the arbelos:

(a) GC and TW are equal and bisect each other.

(b) The area of the arbelos equals the area of the circle on GC as diameter.
(c) The lines GA and GB pass through T and W.

The arbelos has many properties not so easily established. For example it is
alleged that Archimedes showed that the circles inscribed in the curvilinear
triangles ACG and BCG are equal, the diameter of each being r,r,/r. The smallest
circle that is tangent to and circumscribes these two circles is equal to the circle
on GC, and therefore equal in area to the arbelos. Consider, in the arbelos, a
chain of circles ¢y, ¢, ..., all tangent to the semicircles on AB and AC, where
¢, is also tangent to the semicircle on BC, ¢, to ¢,, and so on. Then, if r,
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represents the radius of ¢, and A4, the distance of its center from ACB, we have
h, = 2nr,. This last proposition is found in Book 1V of Pappus’ Collection
and is there referred to as an ‘ancient proposition.” Later, in Section 3.8 we
shall give a singularly elegant demonstration of this proposition.

8. Cicero has related that when serving as Roman quaestor in Sicily he found and
repaired Archimedes’ neglected tomb, upon which was engraved a sphere
inscribed in a cylinder. This device commemorates Archimedes’ favorite work,
On the Sphere and Cylinder. Verify the following two results established by
Archimedes in this work:

(a) The volume of the sphere is £ that of the circumscribed cylinder.

(b) The area of the sphere is £ of the total area of the circumscribed cylinder.
(c) Define spherical zone (of one and two bases), spherical segment (of one and
two bases), and spherical sector.

(d) Assuming the theorem: The area of a spherical zone is equal to the product of
the circumference of a great circle and the altitude of the zone, obtain the familiar
formula for the area of a sphere and establish the theorem: The area of a spherical
zone of one base is equal to that of a circle whose radius is the chord of the gener-
ating arc.

Assuming that the volume of a spherical sector is given by one-third the
product of the area of its base and the radius of the sphere, obtain the following
results:

(e) The volume of a spherical segment of one base, cut from a sphere of radius
R, having & as altitude and a as the radius of its base, is given by

V = nh®>(R — h/3) = wh(3a® + h?)/6.

(f) The volume of a spherical segment of two bases, having 4 as altitude and
a and b as the radii of its bases, is given by

V = wh(3a* + 3b* + h?)/6.

(g) The spherical segment of part (f) is equivalent to the sum of a sphere of
radius h/2 and two cylinders whose altitudes are each 4/2 and whose radii are
a and b, respectively.

1.6 APOLLONIUS AND LATER GREEK GEOMETERS

The third mathematical giant of Greek antiquity was Apollonius, who was
born about 262 B.C. in Perga in southern Asia Minor. As a young man he
went to Alexandria, studied under the successors of Euclid, and then spent
most of the remainder of his life at the University. He died sometime around
200 B.C.

Although Apollonius was an astronomer of note and although he wrote
on a variety of mathematical subjects, his chief bid to fame rests on his
extraordinary and monumental Conic Sections, a work which earned him
the title, among his contemporaries, of the * Great Geometer.” Apollonius’
Conic Sections, in eight books and containing about 400 propositions, is a
thorough investigation of these curves, and completely superseded all earlier
works on the subject. Only the first seven of the eight books have come down
to us, the first four in Greek and the following three from a ninth-century
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Arabic translation. The first four books, of which I, II, and III are pre-
sumably founded on Euclid’s earlier effort, deal with the general elementary
theory of conics, while the later books are devoted to more specialized
investigations.

Prior to Apollonius, the Greeks derived the conic sections from three
types of cones of revolution, according as the vertex angle of the cone was
less than, equal to, or greater than a right angle. By cutting each of three
such cones with a plane perpendicular to an element of the cone an ellipse,
parabola, and hyperbola respectively result (only one branch of the hyperbola
appearing). Apollonius, on the other hand, in Book I of his treatise, obtains
all the conic sections in the now familiar way from one arbitrary right or
oblique circular double cone.

The names ellipse, parabola, and hyperbola were supplied by Apollonius,
and were borrowed from the early Pythagorean terminology of application
of areas. When the Pythagoreans applied a rectangle to a line segment (that
is, placed the base of the rectangle along the line segment, with one end of
the base coinciding with one end of the segment) they said they had a case
of ““ellipsis,” * parabole,” or ‘‘hyperbole” according as the base of the
applied rectangle fell short of the line segment, exactly coincided with it,
or exceeded it. Now let AB (see Figure 1.6a) be the principal axis of a conic,

Figure 1.6a

focus

A : 0 B

P any point on the conic, and Q the foot of the perpendicularito AB. At A,
which is a vertex of the conic, draw a perpendicular to AB and mark off
on it a distance AR equal to what we now call the latus rectum, or parameter
p, of the conic. Apply, to the segment AR, a rectangle having 4Q for one
side and an area equal to (PQ)?. According as the application falls short of,
coincides with, or exceeds the segment AR, Apollonius calls the conic an
ellipse, a parabola, or a hyperbola. In other words, if we consider the curve
referred to a Cartesian coordinate system having its x and y axes along AB
and AR respectively and if we designate the coordinates of P by x and y,
then the curve is an ellipse, parabola, or hyperbola according as y* = px.
Actually, in the cases of the ellipse and hyperbola,
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y? = px F px?/d,

where d is the length of the diameter through vertex 4. Apollonius derives
the bulk of the geometry of the conic sections from the geometrical equiva-
lents of these Cartesian equations. Facts like this cause some to defend the
thesis that analytic geometry was really an invention of the Greeks.

Book II of Apollonius’ treatise on Conic Sections deals with properties of
asymptotes and conjugate hyperbolas, and the drawing of tangents. Book
IIT contains an assortment of theorems. Thus there are some area theorems
like: If the tangents at any two points A and B of a conic intersect in C and
also intersect the diameters through B and A in D and E, then triangles CDB
and ACE are equal in area. One also finds the harmonic properties of poles
and polars (a subject to be considered by us in the later chapter on projective
geometry), and theorems concerning the product of the segments of inter-
secting chords. As an example of the latter there is the theorem (sometimes
today referred to as Newton’s Theorem): If two chords PQ and MN, parallel
to two given directions, intersect in O, then (PO)(OQ)/(MO)(ON) is a constant
independent of the position of O. The well-known focal properties of the
central conics occur toward the end of Book III. In the entire extant treatise
there is no mention of the focus-directrix property of the conics, nor, for
that matter, of the focus of the parabola. This is curious because, according
to Pappus, Euclid was aware of these properties. Book IV of the treatise
proves the converses of some of those propositions of Book III concerning
harmonic properties of poles and polars. There also are some theorems about
pairs of intersecting conics. Book V is the most remarkable and original of
the extant books. It treats of normals considered as maximum and minimum
line segments drawn from a point to the curve. The construction and
enumeration of normals from a given point are dealt with. The subject is
pushed to the point where one can write down the Cartesian equations of
the evolutes (envelopes of normals) of the three conics! Book VI contains
theorems and constructions concerning equal and similar conics. Thus it is
shown how in a given right cone to find a section equal to a given conic.
Book VII contains a number of theorems involving conjugate diame-
ters, such as the one about the constancy of the area of the parallelogram
formed by the tangents to a central conic at the extremities of a pair of such
diameters.

Conic Sections is a great treatise, but, because of the extent and elaborate-
ness of the exposition and the portentiousness of the statements of many
complex propositions, is rather trying to read. Even from the above brief
sketch of contents we see that the treatise is far more complete than the
usual present-day college course in the subject.

Pappus has given brief indications of the contents of six other works of
Apollonius. These are On Proportional Section (181 propositions), On Spatial
Section (124 propositions), On Determinate Section (83 propositions), Tan-
gencies (124 propositions), Vergings (125 propositions), and Plane Loci (147
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Figure 1.6b

propositions). Only the first of these has survived, and this in Arabic. It
deals with the general problem (see Figure 1.6b): Given two lines a and b
with the fixed points 4 on a and B on b, to draw through a given point O
a line OA’B’ cutting a in A" and b in B’ so that AA’/BB’ = k, a given constant.
The exhaustiveness of the treatment is indicated by the fact that Apollonius
considers 77 separate cases. The second work dealt with a similar problem,
only here we wish to have (44’)(BB’) = k. The third work concerned itself
with the problem: Given four points 4, B, C, D on a line, to find a point P
on the line such that we have (4P)(CP)/(BP)(DP) = k. The work Tangencies
dealt with the problem of constructing a circle tangent to three given circles,
where the given circles are permitted to degenerate into straight lines or
points. This problem, now known as the problem of Apollonius, has attracted
many mathematicians and in the nineteenth century served as a sort of test
problem in the competition between synthetic and analytic geometry.* The
general problem in Vergings was that of inserting a line segment between
two given loci such that the line of the segment shall pass through a given
point. In the last work, Plane Loci, appeared, among many others, the two
theorems: (1) If A and B are fixed points and k a given constant, then the locus
of a point P, such that AP/BP =k, is either a circle (if k # 1) or a straight
line (if k = 1), and (2) If A, B, . .. are fixed points and a, b, . . ., k are given
constants, then the locus of a point P, such that a(AP)?> + b(BP)? + ... =k,
is a circle. The circle of (1) is known, in modern college geometry texts, as
a circle of Apollonius. Many attempts have been made to restore, from what
little information we know of them, the above lost works of Apollonius.
With the passing of Apollonius the golden age of Greek geometry came
to an end, and the lesser geometers who followed did little more than fill
in details and perhaps independently develop certain theories the germs of
which were already contained in the works of the three great predecessors.
In particular, a number of new higher plane curves were discovered and the
applications of geometry were exploited. Among these later geometers special
mention should be made of Heron, Menelaus, Claudius Ptolemy, and Pappus.

* See N. A. Court, “The problem of Apollonius,” The Mathematics Teacher, vol. 54,
no. 6 (Oct. 1961), pp. 444-452.
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In geometry Heron largely concerned himself with plane and solid men-
suration, and Menelaus and Ptolemy contributed to trigonometry as a
handmaiden of astronomy. Pappus, the last of the creative Greek geometers,
lived toward the end of the third century A.D., 500 years after Apollonius,
and vainly strove with enthusiasm to rekindle fresh life into languishing
Greek geometry. His great work, the Collection, most of which has come
down to us, is a combined commentary and guidebook of the existing geo-
metrical works of his time, sown with numerous original propositions,
improvements, extensions, and valuable historical comments. There are many
rich geometrical nuggets in the Collection, but it proved to be the requiem
of Greek geometry, for after Pappus Greek mathematics ceased to be a
living study and we find merely its memory perpetuated by minor writers
and commentators. Among these were Theon, Proclus, and Eutocius, the
first known to us for his edition of Euclid’s Elements, the second for the
Eudemian Summary and his Commentary on Euclid, Book I, and the third
for commentary on Archimedes.

In ancient Greek geometry, both in its form and in its content, we find
the fountainhead of the subject. One can scarcely overemphasize the im-
portance to all subsequent geometry of this remarkable bequest of the
ancient Greeks.

PROBLEMS

1. In his lost treatise on Tangencies, Apollonius considered the problem of
drawing a circle tangent to three given circles A, B, C, where each of 4, B, C
may independently assume either of the degenerate forms of point or straight
line. This problem has become known as the problem of Apollonius.

(a) Show that there are ten cases of the problem of Apollonius, depending
on whether each of 4, B, Cis a point, a line, or a circle. What is the number of
possible solutions for each case?

(b) Solve the problem where 4, B, C are two points and a line.

(c) Reduce the problem where A4, B, C are two lines and a point to the case of
part (b).

(d) Given the focus and directrix of a parabola p, and a line m. With compass
and straightedge find the points of intersection of p and m.

(e) It is possible to have as many as eight circles tangent to three given circles.
Suppose we call a directed circle (that is, a circle with an arrow on it) a cycle,
and say that two cycles are tangent if and only if their circles are tangent and
are directed in the same direction at their point of contact. What is the maximum
number of cycles that can be drawn tangent to three given cycles?

2. (a) Solve the following easy verging problem considered by Apollonius in his
work Vergings: In a given circle to insert a chord of given length and verging
to a given point.

A more difficult verging problem considered by Apollonius is: Given a
rhombus with one side produced, to insert a line segment of given length in
the exterior angle so that it verges to the opposite vertex.
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Let us be given two curves m and n, and a point O. Suppose we permit
ourselves to mark, on a given straightedge, a segment MN, and then to adjust
the straightedge so that it passes through O and cuts the curves m and »n with
M on m and N on n. The line drawn along the straightedge is then said to have
been drawn by “ the insertion principle.” Some problems beyond the Euclidean
tools can be solved with these tools if we also permit ourselves to use the
insertion principle. Establish the correctness of the following two such
constructions.

(b) Let AB be a given segment. Draw angle ABM = 90° and the angle ABN
= 120°. Now draw ACD cutting BM in C and BN in D and such that CD = AB.
Then (AC)3 = 2(AB)?, and we have a solution, using the insertion principle, of
the ancient problem of duplicating a cube. Essentially the above construction
was given in publications by Vieta (1646) and Newton (1728).

(c) Let AOB be any central angle in a given circle. Through B draw a line
BCD cutting the circle again in C, A0 produced in D, and such that CD = OA,
the radius of the circle. Then angle ADB = } angle AOB. This solution of the
famous problem of trisecting an angle is implied by a theorem given by
Archimedes (ca. 240 B.C.).

. (a) Establish, by analytic geometry, the two theorems (1) and (2) stated in
Section 1.6 in connection with Apollonius’ work Plane Loci.

(b) Establish synthetically the first theorem in part (a) and also the following
special case of the second theorem in part (a): The locus of a point, the sum of
the squares of whose distances from two fixed points is constant, is a circle
whose center is the midpoint of the segment joining the two points.

. In Section 1.6, where the origin of the names ellipse, parabola, and hyperbola
is considered, we read: * Actually, in the cases of the ellipse and hyperbola,

y? = px F px?*/d,
where d is the length of the diameter through vertex A4.” Verify this.

. Eratosthenes (ca. 230 B.c.) made a famous measurement of the earth. He
observed at Syene, at noon and at the summer solstice, that a vertical stick
had no shadow, while at Alexandria (on the same meridian with Syene) the
sun’s rays were inclined 1/50 of a complete circle to the vertical. He then
calculated the circumference of the earth from the known distance of 5000
stades between Alexandria and Syene. Obtain Eratosthenes’ result of 250,000
stades for the circumference of the earth. There is reason to suppose that a
stade is about equal to 516.7 feet. Assuming this, calculate from the above
result the polar diameter of the earth in miles. (The actual polar diameter of
the earth, to the nearest mile, is 7900 miles.)

. (@) A regular heptagon (seven-sided polygon) cannot be constructed with
Euclidean tools. In his work Metrica, Heron takes, for an approximate con-
struction, the side of the heptagon equal to the apothem (that is, the radius of
the inscribed circle) of a regular hexagon having the same circumcircle. How
good an approximation is this?

(b) In Catoptrica, Heron proves, on the assumption that light travels by the
shortest path, that the angles of incidence and reflection in a mirror are equal.
Prove this.

(c) A man wishes to go from his house to the bank of a straight river for a pail
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of water, which he will then carry to his barn, on the same side of the river as his
house. Find the point on the riverbank which will minimize the distance the
man must travel.

7. (a) Complete the details of the following indication of Heron’s derivation of
the formula for the area A of a triangle 4ABC in terms of its sides a, b, c. (1) Let
the incircle, with center I and radius r, touch the sides BC, CA, ABin D, E, F,
as in Figure 1.6c. On BC produced take G such that CG = AE. Draw IH

Figure 1.6c

>/
~

H

perpendicular to B/ to cut BC in J and to meet the perpendicular to BC at C
inH. 2 Ifs=(a+ b + ¢)/2,then A = rs = (BG)(ID). 3) B, I, C, H lie on a
circle, whence ¥ CHB is the supplement of ¥ BIC and hence equal to X EIA.
(4) BC/CG = BC/AE = CHJ/IE = CJ/JD. (5) BG/CG = CD|JD. (6) (BG)?/
(CG)(BG) = (CD)(BD)/(JD)(BD) = (CD)(BD)/(ID)>. (7) A = (BG)ID) =
[(BG)(CG)(BD)(CD)]''? = [s(s — a)(s — b)(s — )]*'>.

(b) Derive the formula of part (a) by the following process: Let 4 be the altitude
on side ¢ and let m be the projection of side  on side c¢. (1) Show that m
= (b% + ¢® — a?)/2c. (2) Substitute this value for m in h = (b* — m?)'/2,
(3) Substitute this value for 4 in A = (ch)/2.

8. A prismatoid is a polyhedron all of whose vertices lie in two parallel planes.
The two faces in these parallel planes are called the bases of the prismatoid,
the perpendicular distance between the two planes is called the altitude of the
prismatoid, and the section parallel to the bases and midway between them is
called the midsection of the prismatoid. Let us denote the volume of the pris-
matoid by V, the areas of the upper base, lower base, and midsection by
U, L, M, and the altitude by 4. In books on solid geometry it is shown that

V=~nU-+ L+ 4M)/6.

(a) In Book II of the Metrica, Heron gives, as the volume of a prismatoid
having similarly oriented rectangular bases with corresponding pairs of
dimensions a, b and a’, b’,

V= h(a + a’)b + b)/4 + (a — a')(b — b)/12].
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Show that this result is equivalent to that given by the prismatoid formula
above.

(b) Though a sphere is not a prismatoid, show that an application of the
prismatoid formula to the sphere yields a correct expression for its volume.

. Claudius Ptolemy is the author of the famous Almagest, the great definitive
Greek work on astronomy. The first of the thirteen books of the Almagest
contains a table giving the lengths of the chords of all central angles, in a circle
of radius 60, by half-degree intervals from ° to 180°. This is, of course, essentially
a table of sines. Accompanying the table is a succinct explanation of its deriva-
tion from the fruitful theorem now known as Ptolemy’s Theorem: In a cyclic
quadrilateral the product of the diagonals is equal to the sum of the products of
the two pairs of opposite sides.

(a) Designating the length of the chord of a central angle 6, in a circle of radius
60, by crd 6, show that sin 8 = (crd 26)/120.

(b) Prove Ptolemy’s Theorem.

Derive, from Ptolemy’s Theorem, the following relations:

(c) If a and b are the chords of two arcs of a circle of unit radius, then

s = (a/2)(4 - b2 + (b/2)(4 — a®)'?

is the chord of the sum of the two arcs.
(d) If @ and b, a > b, are chords of two arcs of a circle of unit radius, then

d = (a/2)(4 — b*)''* — (b]2)(4 — a*)'/?

is the chord of the difference of the two arcs.
(e) Iftis the chord of an arc of a circle of unit radius, then

s=[2—@ - )

is the chord of half the arc.

In a circle of unit radius, crd 60° = 1, and it may be shown that crd 36° = the
larger segment of the radius when divided in extreme and mean ratio (that is,
when the longer segment is a mean proportional between the shorter segment
and the whole radius) = 0.6180. By part (d), crd 24° = crd (60° — 36°)
= 0.4158. By part (e) we may calculate the chords of 12°, 6°, 3°, 90", and 45’
obtaining crd 90" = 0.0524 and crd 45’ = 0.0262. Now it is easily shown that
if 0°< b < a< 90°

sin a/sin b < alfb.

Therefore crd 60°/crd 45" < 60/45 = %, or crd 1° < ($)(0.0262) = 0.0349.
Also, crd 90’/crd 60" < 90/60 = 2, or crd 1° > (£)(0.0542) = 0.0349. Therefore
crd 1° = 0.0349. By part (¢) we may find crd 4°. Now one can construct a
table of chords for §° intervals. This is the gist of Ptolemy’s method of con-
structing his table of chords.

(f) From a knowledge of the graphs of the functions sin x and tan x show that
(sin x)/x decreases, and (tan x)/x increases, as x increases from 0° to 90°, and
thus establish the inequalities

sin afsin b < a/b < tan aftan b,

where 0° < b < a < 90°.
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10.

(g) Show that the relations of parts (c), (d), (¢) are equivalent to the trigono-
metrical formulas for sin (« + B), sin (« — B), and sin (8/2).

(h) Establish the following interesting results as consequences of Ptolemy’s
Theorem: If P lies on the arc AB of the circumcircle of

(1) an equilateral triangle ABC, then PC = PA + PB;

(2) a square ABCD, then (PA + PC)PC = (PB + PD)PD;

(3) a regular pentagon ABCDE, then PC + PE = PA + PB + PD;

(4) a regular hexagon ABCDEF, then PD + PE = PA + PB + PC + PF.

(a) In Book III of Pappus’ Collection we find the following interesting geo-
metrical representation of some means. Take B on segment AC, B not being
the midpoint O of AC. Erect the perpendicular to AC at B to cut the semi-
circle on AC in D, and let F be the foot of the perpendicular from B on OD.
Show that OD, BD, FD represent the arithmetic mean, the geometric mean,
and the harmonic mean of the segments 4B and BC, and show that, if AB
# BC,

arith. mean > geom. mean > harm. mean.

(b) In Book III of the Collection, Pappus gives the following neat construction
for the harmonic mean of the two given segments OA4 and OB in Figure 1.6d.

D
F
Figure 1.6d o 4 C B
E

On the perpendicular to OB at B mark off BD = BE, and let the perpendicular
to OB at A cut OD in F. Draw FE to cut OB in C. Then OC is the sought
harmonic mean. Prove this.

(c) Let x be the side of a square inscribed in a triangle such that one side of
the square lies along the base a of the triangle. Show that x is half the harmonic
mean between a and h, where A is the altitude on the base a.

(d) Let a and b represent the lengths of two vertical poles, and let wires from
the tip of each pole to the base of the other intersect at a distance x above
ground. Prove that x is half the harmonic mean between a and b.

(e) Show that if a square is inscribed in a right triangle so as to include the
right angle of the triangle, then the side of the square is equal to the product of
the legs of the right triangle divided by the sum of these legs.

(f) In Figure 1.6e, show that x is half the harmonic mean between a and b.
(This is the basis of a nomogram for the lens formula of optics, wherein a, b, x
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Figure 1.6e

represent the object distance, the image distance, and the focal length for a
lens. Given any two of these distances, Figure 1.6e gives us a ready construction
of the third.)

(g) Show that the line segment through the intersection of the diagonals of a
trapezoid, parallel to the bases of the trapezoid, and intercepted by the sides
of the trapezoid is the harmonic mean of the bases of the trapezoid.

11. Prove the following elegant extension of the Pythagorean Theorem given by
Pappus in Book IV of his Collection. Let ABC (see Figure 1.6f) be any triangle

Figure 1.6f

and ABDE, ACFG any parallelograms described externally on AB and AC.
Let DE and FG meet in H and draw BL and CM equal and parallel to HA.
Then

7 BCML = /7 ABDE + /7 ACFG.

12. In Book VII of the Collection, Pappus anticipated one of the centroid theorems
sometimes credited to P. Guldin (1577-1642). These theorems may be stated
as follows: (1) If a plane arc be revolved about an axis in its plane, but not
cutting the arc, the area of the surface of revolution so formed is equal to the
product of the length of the arc and the length of the path traced by the centroid
of the arc. (2) If a plane area be revolved about an axis in its plane, but not inter-
secting the area, the volume of revolution so formed is equal to the product of
the area and the length of the path traced by the centroid of the area. Using
these theorems, find
(a) The volume and surface area of the torus formed by revolving a circle of
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radius r about an axis, in the plane of this circle, at distance R > r from the
center of the circle.

(b) The centroid of a semicircular arc.

(c) The centroid of a semicircular area.

1.7 THE TRANSMISSION OF GREEK GEOMETRY TO
THE OCCIDENT

The closing period of ancient times was dominated by Rome. One Greek
center after another fell before the power of the Roman armies, and in
146 B.C. Greece became a province of the Roman Empire, though Meso-
potamia was not conquered until 65 B.c. and Egypt held out until 30 B.C.
Conditions proved more and more stifling to original scientific work, and
a gradual decline in creative thinking set in. The arrival of the Barbarians
in the west and the eventual collapse of the slave market, with their disastrous
effects on Roman economy, found science reduced to a mediocre level. The
famous Alexandrian school gradually faded with the breakup of ancient
society, becoming completely extinct in 641 A.D., when Alexandria was taken
by the Arabs.

The period starting with the fall of the Roman Empire in the middle of
the fifth century and extending into the eleventh century is known as Europe’s
Dark Ages, for during this period civilization in western Europe reached a
very low ebb. Schooling became almost nonexistent, Greek learning all but
disappeared, and many of the arts and crafts bequeathed by the ancient
world were forgotten. Only the monks of the Catholic monasteries and a
few cultured laymen preserved a slender thread of Greek and Latin learning.
The period was marked by great physical violence and intense religious faith.
The old social order gave way, and society became feudal and ecclesiastical.

The Romans had never taken to abstract mathematics but had contented
themselves with merely a few practical aspects of the subject that were
associated with commerce and civil engineering. With the fall of the Roman
Empire and the subsequent closing of much of east-west trade and the
abandonment of state engineering projects, even these interests waned, and
it is no exaggeration to say that very little in mathematics, beyond the
development of the Christian calendar, was accomplished in the West during
the whole of the half millennium covered by the Dark Ages.

During this bleak period of learning, the people of the east, especially
the Hindus and the Arabs, became the major custodians of mathematics.
However, the Greek concept of rigorous thinking—in fact, the very idea of
deductive proof—seemed distasteful to the Hindu way of doing things.
Although the Hindus excelled in computation, contributed to the devices
of algebra, and played an important role in the development of our present
positional numeral system, they produced almost nothing of importance in
geometry or in basic mathematical methodology. Hindu mathematics of
this period is largely empirical and lacks those outstanding Greek charac-
teristics of clarity and logicality.
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The spectacular episode of the rise and decline of the Arabian Empire
occurred during the period of Europe’s Dark Ages. Within a decade following
Mohammed’s flight from Mecca to Medina in 622 A.D., the scattered and
disunited tribes of the Arabian peninsula were consolidated by a strong
religious fervor into a powerful nation. Within a century, force of arms had
extended the Moslem rule and influence over a territory reaching from
India, through Persia, Mesopotamia, and northern Africa, clear into Spain.
Of considerable importance for the preservation of much of world culture
was the manner in which the Arabs seized upon Greek and Hindu erudition.
The Bagdad caliphs not only governed wisely and well but many became
patrons of learning and invited distinguished scholars to their courts.
Numerous Hindu and Greek works in astronomy, medicine, and mathe-
matics were industriously translated into the Arabic tongue and thus were
saved until later European scholars were able to retranslate them into Latin
and other languages. But for the work of the Arabian scholars a great part
of Greek and Hindu science would have been irretrievably lost over the
long period of the Dark Ages.

Not until the latter part of the eleventh century did Greek classics in
science and mathematics begin once again to filter into Europe. There
followed a period of transmission during which the ancient learning pre-
served by Moslem culture was passed on to the western Europeans through
Latin translations made by Christian scholars travelling to Moslem centers
of learning, and through the opening of western European commercial
relations with the Levant and the Arabian world. The loss of Toledo by
the Moors to the Christians in 1085 was followed by an influx of Christian
scholars to that city to acquire Moslem learning. Other Moorish centers in
Spain were infiltrated, and the twelfth century became, in the history of
mathematics, a century of translators. One of the most industrious translators
of the period was Gherardo of Cremona, who translated into Latin more
than 90 Arabian works, among which were Ptolemy’s A/magest and Euclid’s
Elements. At the same time Italian merchants came in close contact with
eastern civilization, thereby picking up useful arithmetical and algebraical
information. These merchants played an important part in the European
dissemination of the Hindu-Arabic numeral system.

The thirteenth century saw the rise of the universities at Paris, Oxford,
Cambridge, Padua, and Naples. Universities were to become potent factors
in the development of mathematics, since many mathematicians associated
themselves with one or more such institutions. During this century Campanus
made a Latin translation of Euclid’s Elements which later, in 1482, became
the first printed version of Euclid’s great work.

The fourteenth century was a mathematically barren one. It was the
century of the Black Deadt, which swept away more than a third of the
population of Europe, and during this century the Hundred Years War,
with its political and economic upheavals in northern Europe, got well
under way.
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The fifteenth century witnessed the start of the European Renaissance in
art and learning. With the collapse of the Byzantine Empire, culminating
in the fall of Constantinople to the Turks in 1453, refugees flowed into
Italy, bringing with them treasures of Greek civilization. Many Greek classics,
up to that time known only through the often inadequate Arabic translations,
could now be studied from original sources. Also, about the middle of the
century, occurred the invention of printing, which revolutionized the book
trade and enabled knowledge to be disseminated at an unprecedented rate.
Mathematical activity in this century was largely centered in the Italian
cities and in the central European cities of Nuremberg, Vienna, and Prague,
and it concentrated on arithmetic, algebra, and trigonometry, under the
practical influence of trade, navigation, astronomy, and surveying.

In the sixteenth century the development of arithmetic and algebra con-
tinued, the most spectacular mathematical achievement of the century—and
the first really deep mathematical accomplishment beyond the Greeks and
Arabs—being the discovery, by Italian mathematicians, of the algebraic
solution of cubic and quartic equations. A decided stimulus to the further
development of geometry was the translation, in 1533, of Proclus’ Com-
mentary on Euclid, Book I. The first important translation into Latin of
Books I-IV of Apollonius’ Conic Sections was made by Commandino in
1566; Books V-VII did not appear in Latin translation until 1661. In 1572
Commandino made a very important Latin translation of Euclid’s Elements
from the Greek. This translation served as a basis for many subsequent
translations, including a very influential work by Robert Simson, from which,
in turn, so many English editions were derived. By this time a number of
the works of Archimedes had also been translated into Latin. With so many
of the great Greek works in geometry available, it was inevitable that sooner
or later some aspects of the subject should once again claim the attention
of researchers.

PROBLEMS

1. Hindu arithmetical problems often involved the Pythagorean relation. Solve
the following three such problems, the first two of which are adapted from
problems given by Brahmagupta (ca. 630), and the last from a problem given
by Bhaskara (ca. 1150).

(a) Two ascetics lived at the top of a cliff of height h, whose base was distant
d from a neighboring village. One descended the cliff and walked to the village.
The other, being a wizard, flew up a height x and then flew in a straight line
to the village. The distance traversed by each was the same. Find x. (In the
original problem # = 100 and d = 200).

(b) A bamboo 18 cubits high was broken by the wind. Its top touched the
ground 6 cubits from the root. Tell the length of the segments of the bamboo.
(c) A snake’s hole is at the foot of a pillar which is 15 cubits high, and a peacock
is perched on its summit. Seeing a snake, at a distance of thrice the pillar’s
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3.

height, gliding toward his hole, he pounces obliquely upon him. Say quickly
at how many cubits from the snake’s hole do they meet, both proceeding an
equal distance?

. Most remarkable in Hindu geometry, and solitary in its excellence, is a study

made by Brahmagupta concerning cyclic quadrilaterals. Establish the following
chain of theorems, which embody some of Brahmagupta’s findings. It should be
known that Brahmagupta knew Ptolemy’s Theorem on the cyclic quadrilateral
(see Problem 9, Section 1.6.)

(a) The product of two sides of a triangle is equal to the product of the altitude
on the third side and the diameter of the circumscribed circle.

(b) Let ABCD be a cyclic quadrilateral of diameter 3. Denote the lengths of
the sides AB, BC, CD, DA by a, b, c, d, the diagonals BD and AC by m and n,
and the angle between either diagonal and the perpendicular upon the other
by 6. Show that

mdcos 8 = ab + cd, ndcos 0 = ad + be.
(c) Show, for the above quadrilateral, that
m? = (ac + bd)(ab + cd)/(ad + bc),
n? = (ac + bd)(ad + bc)/(ab + cd).

(d) If, in the above quadrilateral, the diagonals are perpendicular to each
other, then

82 = (ad + bc)(ab + cd)/(ac + bd).
(a) Brahmagupta gave the formula
K?=(s—a)s — b)(s — c)s — d)

for the area K of a cyclic quadrilateral of sides a, b, ¢, d and semi-perimeter s.*
Show that Heron’s formula for the area of a triangle is a special case of this
formula.

(b) Using Brahmagupta’s formula of part (a) show that the area of a quadri-
lateral possessing both an inscribed and a circumscribed circle is equal to the
square root of the product of its four sides.

(c) Show that a quadrilateral has perpendicular diagonals if and only if the
sum of the squares of one pair of opposite sides is equal to the sum of the
squares of the other pair of opposite sides.

* For a derivation of this formula see, for example, E. W. Hobson, A4 Treatise on Plane
Trigonometry (New York: Macmillan Company, 4th ed. 1902), p. 204, or R. A. Johnson,
Modern Geometry (Boston: Houghton Mifflin Company, 1929), p. 81. A formula giving
the area of an arbitrary quadrilateral is

K? = (s — a)(s — b)(s — ¢)(s — d) — abed cos? [(4 + C)/2),

where A and C are a pair of opposite vertex angles of the quadrilateral. There is also the
interesting Bretschneider formula,

16K? = 4m?n* — (a® — b* + c? — d?)?,

where m and n are the diagonals of the quadrilateral. See Prob. E 1376, The American
Mathematical Monthly, vol. 67, no. 3 (Mar. 1960), p. 291.
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(d) Brahmagupta showed that if a> + b2 = ¢% and 4% + B? = C?, then any
quadrilateral having aC, ¢B, bC, cA for consecutive sides has perpendicular
diagonals. Prove this.
(e) If (a, b, ¢), (4, B, C) are two Pythagorean triples (that is, a, b, ¢, A, B, C
are positive integers such that a2 + b2 = ¢ and 4% + B? = C?), then the
cyclic quadrilateral having consecutive sides aC, ¢B, bC, cA is called a Brahma-
gupta trapezium. Find the sides, diagonals, circumradius, and area of the
Brahmagupta trapezium determined by the two Pythagorean triples (3, 4, 5)
and (5, 12, 13).

4. Many students of high school geometry have seen Bhaskara’s dissection proof
of the Pythagorean Theorem, in which the square on the hypotenuse is cut up
as indicated in Figure 1.7a, into four triangles, each congruent to the given

Figure 1.7a

triangle, plus a square with side equal to the difference of the legs of the given
triangle. The pieces are easily rearranged to give the sum of the squares on the
two legs. Bhaskara drew the figure and offered no further explanation than the
word ‘““Behold!” Supply a proof.

5. (a) One of the oldest methods for approximating the real roots of an equation
is the rule known as regula duorum falsorum, often called the rule of double
false position. This method seems to have originated in India and was used by
the Arabians. In brief the method is this: Let x; and x, be two numbers lying
close to and on opposite sides of a real root x of the equation f(x) = 0. Then
the intersection with the x axis of the chord joining the points (x;, f(x;)),
(x2, f(x2)) gives an approximation x3 to the sought root. Show, by elementary
geometry, that

x3 = [x2f(x1) — x1f(x)Vf(x1) — f(x2)].

The process can now be reapplied with the appropriate pair x;, x5 or x3, x,.
(b) Compute, by double false position, to three decimal places, the root of
x3 — 36x + 72 = 0 which lies between 2 and 3.

(c) Compute, by double false position, to three decimal places, the root of
x — tan x = 0 which lies between 4.4 and 4.5.

6. As in Problem 5 above, some simple geometry often leads to a procedure for
successively approximating the real roots of an equation. Along these lines
consider the following:

(a) Show that if x, is a sufficiently close approximation to a real root x of the

equation f'(x) = 0, then
X2 = x1 — f(x)If (x1),
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where f’(x) is the derivative of f(x), is a better approximation. Etc. (This is the
so-called Newton-Raphson method of successively approximating the real
roots of an equation.)

(b) As a variant of the method of double false position, let a and x; be two
numbers lying sufficiently close to a real root x of the equation f(x) = 0. Then

x2 = [x,f(@) — af (x))/[f(@) — f(x1)]

is a better approximation. Etc.

(c) Suppose we wish to solve the equation F(x) = 0, and suppose that by
transposition we can write the equation in the form f(x) = g(x), where f(x)
is such that we can solve f(x) = ¢, where c¢ is a constant, for x. Then, if x,
is a suitable approximation to a real root x of the equation F(x) = 0, show that
the solution x, of f(x) = g(x;) is a better approximation. Etc.

(d) Use the method of part (c) to solve the equation x — tan x = 0.

(e) Use the method of part (c) to solve the equation cos x — e*/3 = 0.

(f) By means of the hyperbola xy = k, k > 0, show that if x, is an approxima-
tion to vk, then x, = (x; + k/x;)/2 is a better approximation. Etc. (This
procedure was used by Heron of Alexandria.)

(g) Obtain the procedure in part (f) from the Newton-Raphson method applied
to f(x) = x* — k.

(h) By the Newton-Raphson method applied to f(x) = x® — k, n a positive
integer, show that if x; is an approximation to ¥k, then

x2=[(n— Dx; + k/x,"~/n

is a better approximation. Etc.

The student may wish to look up, in a text on the theory of equations, the
so-called Fourier’s Theorem, which states a guarantee under which the Newton-
Raphson method is bound to succeed.

. (a) Given line segments of lengths a, b, n, construct, with Euclidean tools, a
line segment of length m = a3/bn.

(b) Omar Khayyam (1044 7-11237?) was the first to handle every type of cubic
equation that possesses a positive root. Complete the details of the following
sketch of Khayyam’s geometrical solution of the cubic

x3 + b%x + a® = cx?,

where a, b, ¢, x are thought of as lengths of line segments. Khayyam stated this
type of cubic rhetorically as ““a cube, some sides, and some numbers are equal
to some squares.”

In Figure 1.7b, construct AB = a3/b? (by part (a)) and BC = c¢. Draw a
semicircle on AC as diameter and let the perpendicular to AC at B cut it in D.
On BD mark off BE = b, and through E draw EF parallel to AC. Find G on
BC such that (BG)(ED) = (BE)(AB) and complete the rectangle DBGH.
Through H draw the rectangular hyperbola having EF and ED for asymptotes,
and let it cut the semicircle in J. Let the parallel to DE through J cut EF in K
and BC in L. Show, successively, that: (1) (EK)(KJ) = (BG)(ED) = (BE)(AB),
(2) (BL)(LJ) = (BEXAL). (3) (LJ)* = (ALXLC), (4) (BE)*/(BL)*> = (LJ)?*
(AL)* = LCJAL, (5) (BE)*(AL) = (BL)*(LC), (6) b*(BL + a®/b*) = (BL)*
(c — BL), (7) (BL)® + b*(BL) + a® = c¢(BL)2. Thus BL is a root of the given

1.7 The Transmission of Greek Geometry to the Occident
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cubic equation. (See J. L. Coolidge, The Mathematics of Great Amateurs,
New York: Oxford University Press, 1949, Chap. 2, “Omar Khayyam.”)

8. The Arabians were interested in constructions on a spherical surface. Consider
the following problems, to be solved with Euclidean tools and appropriate
plane constructions.

(a) Given a material sphere, find its diameter.

(b) On a given material sphere locate the vertices of an inscribed cube.

(c) On a given material sphere locate the vertices of an inscribed regular
tetrahedron.

9. The poverty of geometry in western Europe during the Dark Ages is illustrated
by the following two problems considered by the famous French scholar and
churchman, Gerbert (ca. 950-1003), who became Pope Sylvester II.

(a) In his Geometry Gerbert solved the problem, considered very difficult at
the time, of determining the legs of a right triangle whose hypotenuse and area
are given. Solve this problem.

(b) Gerbert expressed the area of an equilateral triangle of side a as (a/2)
(a — a/7). Show that this is not correct and is equivalent to taking v/3 = 1.714.

10. A regular star-polygon is the figure formed by connecting with straight lines
every ath point, starting at some given one, of the n points which divide a
circumference into n equal parts, where a and » are relatively prime and n > 2.
Such a star-polygon is represented by the symbol {n/a}, and is sometimes called
a regular n-gram. When a = 1 we have a regular polygon. Star-polygons
made their appearance in the ancient Pythagorean school, where the {§}
star-polygon, or pentagram, was used as a badge of recognition. Star-polygons
also occur in the geometry of Boethius (ca. 475-524) and the translations of
Euclid from the Arabic by Adelard of Bath (ca. 1120) and Johannes Campanus
(ca. 1260). Thomas Bradwardine (1290-1349), who died as Archbishop of
Canterbury, developed some of their properties. They were considered also
by Regiomontanus (1436-1476), Charles de Bouelles (1470-1533), and Johann
Kepler (1571-1630).

(a) Construct, with the aid of a protractor, the star-polygons {$}, {3}, {3},
{3} &), @), (¥

(b) Let ¢(n), called the Euler ¢ function, denote the number of numbers less
than » and prime to it. Show that there are [¢ (n)]/2 regular n-grams.
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(c) Show that if n is prime there are (n — 1)/2 regular n-grams.

(d) Show that the sum of the angles at the ‘“points” of the regular {n/a}
star-polygon is given by |n — 2a|180°. (This result was given by Bradwardine.)
For the extension to polyhedra, see H. S. M. Coxeter, Regular Polytopes,
New York: Pitman Publishing Corporation, 1947, Chap. VI, ¢ Star-Polyhedra.”

11. Johann Miiller, more generally known as Regiomontanus, from the Latinized
form of his birthplace of Konigsberg (‘“‘king’s mountain’’), was perhaps the
ablest and most influential mathematician of the fifteenth century. His treatise
De triangulis omnimodis, which was written about 1464 but posthumously
published in 1533, was the first systematic European exposition of plane and
spherical trigonometry considered independently of astronomy. Solve the
following three problems the first two of which are found in this work.

(a) Determine a triangle given the difference of two sides, the altitude on the
third side, and the difference of the segments into which the altitude divides
the third side.

(b) Determine a triangle given a side, the altitude on this side, and the ratio
of the other two sides.

(c) Construct a cyclic quadrilateral given the four sides.

12. Solve the following geometrical problem found in the Sima of Luca Pacioli
(ca. 1445—ca. 1509). The radius of the inscribed circle of a triangle is 4 and the
segments into which one side is divided by the point of contact are 6 and 8.
Determine the other two sides.

1.8 THE CASE FOR EMPIRICAL, OR EXPERIMENTAL,
GEOMETRY

In Section 1.2 the empirical nature of pre-Hellenic geometry was considered,
and it was pointed out that conclusions reached in this way may be incorrect
and therefore cannot be regarded as established. To be assured that a con-
clusion incontestably follows from preliminary premises, deductive reasoning
is necessary, and no amount of supporting empirical evidence will, of itself,
suffice. For this reason the Greeks found in deductive reasoning the vital
element of mathematical method, and they insisted that geometry—indeed,
all mathematics—be developed via this process.

Since deductive reasoning has the advantage that its conclusions are un-
questionable if the premises are accepted, whereas empirical procedure
always leaves some room for doubt, one might overhastily outlaw all em-
piricism and experimentation from geometry. This would be a grave mistake,
for though today all recorded geometry is wholly deductive and completely
bereft of any inductive element, it is probably quite true that few, if any,
significant geometrical facts were ever found without some preliminary
empirical work of one form or another. Before a geometrical statement can
be proved or disproved by deduction, it must first be thought of, or con-
jectured, and a conjecture is nothing but a guess made more or less plausible
by intuition, observation, analogy, experimentation, or some other form of
empirical procedure. Deduction is a convincing formal mode of exposition,

1.8 The Case for Empirical, or Experimental, Geometry
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but it is hardly a means of discovery. It is a set of complicated machinery
that needs material to work upon, and the material is usually furnished by
empirical considerations. Even the steps of a deductive proof or disproof
are not dictated to us by the deductive apparatus itself, but must be arrived
at by trial and error, experience, and shrewd guessing. Irtdeed, skill in the
art of good guessing is one of the prime ingredients in the make-up of a
worthy geometer.

To succeed in geometry, either as a creator or simply as a problem solver,
one must be willing to experiment, to draw and test innumerable figures,
to try this and to try that. Galileo (1564-1642), in 1599, attempted to ascertain
the area under one arch of the cycloid curve* by balancing a cycloidal
template against circular templates of the size of the generating circle. He
incorrectly conjectured that the area under an arch is very nearly, but not
exactly, three times the area of the circle. The first published mathematical
demonstration that the area is exactly three times that of the generating circle
was furnished, in 1644, by his pupil, Evangelista Torricelli (1608-1647),
with the use of early integration methods.

Blaise Pascal (1623-1662), when a very young boy, *“discovered ” that the
sum of the angles of a triangle is a straight angle by a simple experiment
involving the folding of a paper triangle.

By actually constructing a right circular cone, three times filling it with
sand and then emptying the contents into a right circular cylinder of the
same radius and height, one would conjecture that the volume of a right
circular cone is one third the product of its altitude and the area of its
circular base.

Suppose one should take a horizontal circular disc and drive an upright
nail into its center, and then coil a thick cord on the disc, in spiral fashion
about the nail, until the disc is covered. This would require a piece of the
cord of a certain length. Now take a material hemisphere of the same radius
as the disc and drive a nail into its pole. As before, coil a thick cord, now
on the hemisphere, in spiral fashion about the nail, until the hemisphere is
covered. It would be found that approximately twice as much cord is needed
in the second experiment as was needed in the first one. From this it can be
conjectured that the area of a sphere is four times the area of one of its
great circles.

Many first-rate conjectures concerning maxima and minima problems in
the calculus of variations were first obtained by soap film experiments.

Archimedes, in his treatise on Method, has described how he first came to
realize, by mechanical considerations, that the volume of a sphere is given
by 4nr®/3, where r is the radius of the sphere. Here, briefly, is his process.
Place the sphere with its polar diameter along a horizontal x axis with the
north pole N at the origin (see Figure 1.8a). Construct the cylinder and the
cone of revolution obtained by rotating the rectangle NABS and the triangle

* A cycloid is the curve traced by a fixed point on the circumference of a circle which rolls,
without slipping, along a straight line.
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NCS about the x axis. Now cut from the three solids thin vertical slices
(assuming that they are flat cylinders) at distance x from N and of thickness
Ax. The volumes of these slices are, approximately

sphere: 7nx(2r — x)Ax,
cylinder: nr’Ax.

cone: nx2Ax.

Let us hang at T the slices from the sphere and the cone, where TN = 2r.:

Their combined moment* about N is
[rx(2r — x)Ax + nx*Ax]2r = 4nrixAx.
This, we observe, is four times the moment of the slice cut from the cylinder

when that slice is left where it is. Adding a large number of these slices
together we find

2r[vol. of sphere + vol. of cone] =4r[vol. of cylinder],
or
2r[vol. of sphere + 87nr3/3] = 8nr#,
or
vol. of sphere = 4nr3/3.

But Archimedes’ mathematical conscience would not permit him to accept
the above mechanical argument as a proof, and he accordingly supplied a
rigorous demonstration employing the so-called Greek method of exhaustion.

One should not deprecate experiments and approaches of the above kind,

for there is no doubt that much geometry has been ‘““discovered’” by such
means. Of course, once a geometrical conjecture has been formulated, we

* By the moment of a volume about a point is here meant the product of the volume and
the perpendicular distance from the point to the vertical line passing through the centroid
of the volume.

1.8 The Case for Empirical, or Experimental, Geometry
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must, like Archimedes, establish or disestablish it by deductive reasoning,
and thus completely settle the matter one way or the other. Many a geo-
metrical conjecture has been discarded by the outcome of just one carefully
drawn figure, or by the examination of some extreme case.

A very fruitful way of making geometrical conjectures is by the employ-
ment of analogy, though it must be confessed that many conjectures so
made are ultimately proved to be incorrect. An astonishing amount of space
geometry has been discovered via analogy from similar situations in the
plane, and in the geometry of higher dimensional spaces analogy has played
a very successful role.

There is much to be said, at the elementary level of instruction, for
empirical, or experimental, geometry, and many teachers feel it wise to
precede a first course in demonstrative geometry with a few weeks of experi-
mental geometry. The work of these weeks acquaints the student with many
geometrical concepts, and can be designed to emphasize both the values
and the shortcomings of empirical geometry. Such instructional procedure
follows the thesis that, in general, the learning program should parallel the
historical development.

PROBLEMS

1. Does the process called ¢ mathematical induction” have any induction in it?
If so, where?

2. Show empirically, by a simple experiment involving the folding of a paper
triangle, that the sum of the angles of a triangle is a straight angle.

3. If we cut off the top of a triangle by a line parallel to the base of the triangle,
a trapezoid will remain, and the area of a trapezoid is given by the product of
its altitude and the arithmetic average of its two bases. Now, if we cut off the
top of a pyramid by a plane parallel to the base of the pyramid, a frustum will
remain. Reasoning by analogy, obtain the incorrect Babylonian formula (see
Section 1.2) for the volume of a frustum of a pyramid. (This illustrates that
conclusions reached by analogy cannot be regarded as established.)

4. Two ladders, 60 feet long and 40 feet long, lean from opposite sides across an
alley lying between two buildings, the feet of the ladders resting against the
bases of the buildings. If the ladders cross each other at a distance of 10 feet
above the alley, how wide is the alley? Find an approximate solution from
drawings. An algebraic treatment of this problem requires the solution of a
quartic equation. If a and b represent the lengths of the ladders, ¢ the height at
which they cross, and x the width of the alley, one can show that

(aZ — xZ)—lIZ + (b2 — x2)-ll2 —_ C—l.

5. To trisect a central angle AOB of a circle, someone suggests that we trisect
the chord AB and then join these points of trisection with O. While this con-
struction may look somewhat reasonable for small angles, show, by taking an
angle almost equal to 180°, that the construction is patently false.
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10.

11.

. How good are the following empirical straightedge and compass trisections

of an angle of 30°?

(a) Let AOB be the given angle, with O4 = OB. On AB as diameter draw a
semicircle lying on the same side of 4B as is the point O. Take D and E on the
semicircle such that AD = DE = EB. Take F on DE such that DF = DE/4.
Then OF is a sought trisector.

(b) Take the given angle AOB as a central angle in a circle. Let D be dia-
metrically opposite B. Take C as the midpoint of DO and M as the midpoint
of arc AB. Then angle MCB is (approximately) one-third the given angle AOB.
(This very simple method was devised by M. d’Ocagne in 1934 as an approximate
trisection of an arbitrary angle 40 B; it is surprisingly accurate for small angles.)

. The three altitudes of a triangle are concurrent. Are the four altitudes of a

tetrahedron concurrent?

. By considering a triangle as a thin homogeneous plate made up of a family of

fibers (thin strips) parallel to a certain side of the triangle, devise a mechanical
argument showing that the medians of a triangle are concurrent.

. A line segment has 2 zero-dimensional bounding elements (2 end-points),

and its interior is one-dimensional.

A triangle has 3 zero-dimensional and 3 one-dimensional bounding elements
(3 vertices and 3 sides), and its interior is two-dimensional.

A tetrahedron has 4 zero-dimensional, 6 one-dimensional, and 4 two-dimen-
sional bounding elements (4 vertices, 6 edges, 4 faces), and its interior is three-
dimensional.

From this information, how many zero-, one-, two-, and three-dimensional
bounding elements might you expect a pentatope (the four-dimensional analog
of a tetrahedron) to have?

Does Figure 1.8b suggest a proof of the relation

1+2+34+- -+ n=nn+ 1)2?

Figure 1.8b

List the three-space analogs of the planar concepts parallelogram, rectangle,
circle if (a) a tetrahedron, (b) a pyramid, is considered as the three-space analog
of a triangle.

. State theorems in three-space that are analogs of the following theorems in the

plane.

1.8 The Case for Empirical, or Experimental, Geometry
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13.

14.

15.

16.

17.

(a) The bisectors of the angles of a triangle are concurrent at the center of the
inscribed circle of the triangle.

(b) The area of a circle is equal to the area of a triangle the base of which has
the same length as the circumference of the circle and the altitude of which is
equal to the radius of the circle.

(¢) The foot of the altitude of an isosceles triangle is the midpoint of the base.

Two lines through the vertex of an angle and symmetrical with respect to the
bisector of the angle are called a pair of isogonal conjugate lines of the angle.
There is an attractive theorem about triangles which states that if three lines
through the vertices of a triangle are concurrent, then the three isogonal
conjugate lines through the vertices of the triangle are also concurrent. Try to
construct an analogous definition and theorem for the tetrahedron.

Let F, V, E denote the number of faces, vertices, and edges of a polyhedron.
For the tetrahedron, cube, triangular prism, pentagonal prism, square pyramid,
pentagonal pyramid, cube with one corner cut off, cube with a square pyramid
erected on one face, we find that V — E + F = 2. Do you feel that this formula
holds for all polyhedra? Consider the one pictured in Figure 1.8c.

Figure 1.8c

There are convex polyhedra all faces of which are triangles (for instance a
tetrahedron), all faces of which are quadrilaterals (for instance a cube), all faces
of which are pentagons (for instance a regular dodecahedron). Do you think
the list can be continued?

Consider an ellipse with semiaxes a and b. If a = b the ellipse becomes a circle
and the two expressions

P = #(a + b), P’ = 2u(ab)'/?

each become 27a, which gives the perimeter of the circle. This suggests that
P or P’ may give the perimeter E of any ellipse. Discuss.

(a) Consider a convex polyhedron P and let C be any point in its interior.
We can imagine a suitable heterogeneous distribution of mass within P such
that the center of gravity of P will coincide with C. If the polyhedron is thrown
upon a horizontal floor, it will come to rest on one of its faces. Show that this
yields a mechanical argument for the geometrical proposition: ‘“Given a
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convex polyhedron P and a point C in its interior, then there exists a face F
of P such that the foot of the perpendicular from C to the plane of Flies in the
interior of F.”

(b) Give a geometrical proof of the proposition of part (a).

18. Construct a mechanical device for finding the point within an acute-angled
triangle the sum of whose distances from the vertices of the triangle is a
minimum.

19. Given # line segments a,, a,, . .., a., it is not obvious that there exists a convex
cyclic n-gon having these segments for consecutive sides, nor is it apparent how
we might compute the radius of the circumcircle. Show the existence of such
an n-gon and find its circumradius by a simple paperfolding experiment.

20. How can one convince a freshman class that if the inside of a race track is a
noncircular ellipse, and the track is of constant width, then the outside is not
an ellipse?
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Modern Elementary
Geometry

2.1 Sensed Magnitudes - 2.2 Infinite Elements

2.3 The Theorems of Menelaus and Ceva

2.4 Applications of the Theorems of Menelaus and
Ceva - 2.5 Cross Ratio - 2.6 Applications of
Cross Ratio - 2.7 Homographic Ranges and Pencils
2.8 Harmonic Division - 2.9 Orthogonal Circles
2.10 The Radical Axis of a Pair of Circles

The period following the European Renaissance, and running into present
times, is known in the history of mathematics as the modern era. One of the
ways in which mathematicians of the modern era have extended geometry
beyond that inherited from the Greeks has been by the discovery of a host
of further propositions about circles and rectilinear figures deduced from
those listed in Euclid’s Elements. This material is referred to as modern
elementary geometry, and it constitutes a sequel to, or expansion of, Euclid’s
Elements. The nineteenth century witnessed an astonishing growth in this
area of geometry, and the number of papers in the subject which have since
appeared is almost unbelievable. In 1906, Maximilian Simon (in his Uber die
Entwickelung der Elementargeometrie im XIX Jahrhundert) attempted the
construction of a catalogue of contributions to elementary geometry made
during the nineteenth century; it has been estimated that this catalogue
contains upward of 10,000 references! Research in the field has not abated,
and it would seem that the geometry of the triangle and its associated points,
lines, and circles must be inexhaustible. Much of the material has been
extended to the tetrahedron and its associated points, lines, planes, and
spheres, resulting in an enormous and beautiful expansion of elementary
solid geometry. Many of the special points, lines, circles, planes, and spheres
have been named after original or subsequent investigators. Among these
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names are Gergonne, Nagel, Feuerbach, Hart, Casey, Brocard, Lemoine,
Tucker, Neuberg, Simson, McCay, Euler, Gauss, Bodenmiller, Fuhrmann,
Schoute, Spieker, Taylor, Droz-Farny, Morley, Miquel, Hagge, Peaucellier,
Steiner, Tarry, and many others.

Here is a singularly fascinating, highly intricate, extensive, and challenging
field of mathematics that can be studied and pursued with very little mathe-
matical prerequisite and with a fair chance of making an original discovery.
The subject, though elementary, is often far from easy. Large portions of
the material have been summarized and organized into textbooks bearing
the title of modern, or college, geometry. On the grounds that  you cannot
lead anyone farther than you have gone yourself,” a course following one
of these texts is highly desirable for anyone preparing to teach geometry in
high school.

In this chapter we shall briefly consider a few selected topics from modern
elementary geometry. Though we cannot hope in such a short space to do
justice to the subject, the topics we choose will illustrate some of the flavor
and attractiveness of this area of geometry, and all of them will be useful
to us in later parts of our work. Much of modern elementary geometry has,
in one way or another, entered into the main stream of mathematics.

In Chapters 3, 4, and 5 certain additional topics belonging to modern
elementary geometry will be encountered.

2.1 SENSED MAGNITUDES

One of the innovations of modern elementary geometry is the employment,
when it proves useful, of sensed, or signed, magnitudes. It was the extension
of the number system so as to include both positive and negative numbers
that led to this forward step in geometry, and though Albert Girard, René
Descartes, and others introduced negative segments into geometry during
the seventeenth century, the idea of sensed magnitudes was first systematically
exploited in the early nineteenth century by L. N. M. Carnot (in his Géométrie
de position of 1803) and especially by A. F. Mobius (in his Der barycentrische
Calcul of 1827). By means of the concept of sensed magnitudes, several
separate statements or relations can often be combined into a single em-
bracive statement or relation, and a single proof can frequently be formulated
for a theorem that would otherwise require the treatment of a number of
different cases.

We start a study of sensed magnitudes with some definitions and a notation.

2.1.1 DEFINITIONS AND NOTATION. Sometimes we shall choose one direc-
tion along a given straight line as the positive direction, and the other
direction as the negative direction. A segment 4B on the line will then be
considered positive or negative according as the direction from A to B is
the positive or negative direction of the line, and the symbol AB (in contrast
to AB) will be used to denote the resulting signed distance from the point
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A to the point B. Such a segment 4B is called a sensed, or directed, segment;
point A is called the initial point of the segment and point B is called the
terminal point of the segment. The fact that AB and BA are equal in magni-
‘tude but opposite in direction is indicated by the equation

AB = —BA,

or by the equivalent equation

AB + BA = 0.
Of course A4 = 0.

2.1.2 DEerINITIONS. Points which lie on the same straight line are said
to be collinear. A set of collinear points is said to constitute a range of points,
and the straight line on which they lie is called the base of the range. A range
which consists of all the points of its base is called a complete range.

We are now in a position to establish a few basic theorems about sensed
line segments.

2.1.3 TueoreM. If A, B, C are any three collinear points, then
AB + BC + CA =0.

If the points 4, B, C are distinct, then C must lie between 4 and B, or on
the prolongation of AB, or on the prolongation of BA. We consider these
three cases in turn.

If C lies between A and B, then AB = AC + CB, or AB— CB — AC =0,
or AB+ BC+ CA =0.

If C lies on the prolongation of AB, then AB + BC = AC, or AB + BC —
AC=0, or AB+ BC + CA =0.

If C lies on the prolongation of BA, then CA + AB = CB, or AB— CB +
CA =0, or AB+ BC + CA =0.

The situations where one or more of the points 4, B, C coincide are
easily disposed of.

This theorem illustrates one of the economy features of sensed magnitudes.
Without the concept of directed line segments, three separate equations
would have to be given to describe the possible relations connecting the
three unsigned distances AB, BC, CA between pairs of the three distinct
collinear points 4, B, C.

2.1.4 THEOREM. Let O be any point on the line of segment AB. Then
AB = 0B — OA.

This is an immediate consequence of Theorem 2.1.3, for by that theorem
we have AB + BO + OA =0, whence AB= — BO — OA = OB — OA.
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2.1.5 EuLer’s THEOREM (1747). If A, B, C, D are any four collinear
points, then

AD-BC+BD-CA +CD-AB=0.

The theorem follows by noting that, by Theorem 2.1.4, the left member
of the above equation may be put in the form

AD(DC — DB) + BD(DA — DC) + CD(DB — DA),
which, upon expansion and reduction, is found to vanish identically.

The notion of directed segment leads to the following very useful definition
of the ratio in which a point on a line divides a segment on that line.

2.1.6 DEeFNITIONS. If A, B, P are distinct collinear points, we define the
ratio in which P divides the segment AB to be the ratio AP/PB. It is to be
noticed that the value of this ratio is independent of any direction assigned
to line AB. If P lies between A and B, the division is said to be internal;
otherwise the division is said to be external. Denoting the ratio AP/PB by r
we note that if P lies on the prolongation of B4, then —1 < r < 0; if P lies
between 4 and B, then 0 <r < co; if P lies on the prolongation of AB,
then —o0o <r<-—1.

If A and B are distinct and P coincides with 4, we set AP/PB =0. If A
and B are distinct and P coincides with B, the ratio AP/PB is undefined and
we indicate this by writing AP/PB = co.

Workers in modern elementary geometry have devised several ways of
assigning a sense to angles lying in a common plane, and each way has its
own uses. The way we are about to describe is particularly useful in relations
involving trigonometric functions.

2.1.7 DEFINITIONS AND NOTATION. We may consider an £ AOB as gener-
ated by the rotation of side OA about point O until it coincides with side
OB, the rotation not exceeding 180°. If the rotation is counterclockwise the
angle is said to be positive; if the rotation is clockwise the angle is said to
be negative, and the symbol ¥ AOB (in contrast to ¥ AOB) will be used to
denote the resulting signed rotation. Such an ¥ AOB is called a sensed, or
directed, angle; point O is called the vertex of the angle; side OA is called
the initial side of the angle; side OB is called the rerminal side of the angle.
If ¥ AOB is not a straight angle, then the fact that <x AOB and & BOA are
equal in magnitude but opposite in direction is indicated by the equation

¥ AOB = — ¥ BOA,
or by the equivalent equation

¥AOB + ¥BOA =0.

56 Modern Elementary Geometry



It is sometimes convenient to assign a sense to the areas of triangles lying
in a common plane.

2.1.8 DEFINITIONS AND NOTATION. A triangle ABC will be considered as
positive or negative according as the tracing of the perimeter from 4 to B
to C to A is counterclockwise or clockwise. Such a signed triangular area
is called a sensed, or directed, area, and will be denoted by A ABC (in
contrast to A ABC).

Some subsequent developments in this chapter will make use of the
following two important theorems.

2.1.9 THeorReM. If vertex A of triangle ABC is joined to any point L on
line BC, then
BL ABsin BAL
LC ACsin LAC
Let & denote the length of the perpendicular from A to line BC. The
reader may then check that for all possible figures,
BL hBL 2AABL (AB)(AL)sin BAL AB sin BAL
IC hLC 2AALC (AL)(AC)sin LAC ACsin LAC

2.1.10 THeoreM. If a, b, c, d are four distinct lines passing through a
point V, then

(sin AVC/sin CVB)/(sin AVD/sin DVB)

is independent of the positions of A, B, C, D on the lines a,b, c, d, respectively,
so long as they are all distinct from V.

The value of the expression certainly will not change if any one of the
points is taken at a different position of its line on the same side of V. The
reader can easily show that the value of the expression also will not change
if any one of the points is taken at a position of its line on the opposite
side of V.

We now close the present section with the following convenient definitions.

2.1.11 DerNITIONS.  Straight lines which lie in a plane and pass through
a common point are said to be concurrent. A set of concurrent coplanar
lines is said to constitute a pencil of lines, and the point through which they
all pass is called the vertex of the pencil. A pencil which consists of all the
lines through its vertex is called a complete pencil. A line in the plane of a
pencil and not passing through the vertex of the pencil is called a transversal
of the pencil.
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10.

11.
. If AL is the bisector of exterior angle 4 of triangle ABC, where AB # AC,

13.

14.
15.
16.

17.

PROBLEMS

. If 44, A5, ..., A, are n collinear points, show that

Aid; + A, As + - + Ay Ap + A, A, = O.

. If A, B, P are collinear and M is the midpoint of 4B, show that PM =

(P4 + PB))2.

. If 0, A4, B are collinear, show that OA% + OB? = AB* + 2(OA)(OB).
. If 0, A, B, C are collinear and O4 + OB + OC = O and if P is any point on

the line AB, show that PA + PB + PC = 3 PO.

. If on the same line we have O4A + OB+ OC =0 and O'A + OB

+0’C’ = 0, show that A4’ + BB + CC’ = 3 00..

. If A, B, C are collinear and P, Q, R are the midpoints of BC, CA, AB respec-

tively, show that the midpoints of CR and PQ coincide.

. Let a and b be two given (positive) segments. Construct points P and Q on

AB such that AP/PB = a/b and AQ/OB = —a/b.

. Show that if two points divide a line segment AB in equal ratios, then the two

points coincide.

. If r denotes the ratio OA4/OB and r’ the ratio OA’'|OB’, where O, A, B, A’, B’

are collinear, show that
r'BB + rA'B + r'B'A + A4’ = 0.
If M is the midpoint of side BC of triangle ABC, and if AB < AC, prove that
XMAC < XBAM.
If AL is the bisector of angle A in triangle ABC, show that BL/LC = AB/AC.

show that BL/LC = — AB/AC.

Prove Stewart’s Theorem: If 4, B, C are e any three pomts on a line and P any
point, then PA2?-BC + PB?-CA + PC?-AB + BC-CA - AB = 0. (This
theorem was stated, without proof, by Matthew Stewart (1717-1785) in 1746;
it was rediscovered and proved by Thomas Simpson (1710-1761) in 1751,
by L. Euler in 1780, and by L. N. M. Carnot in 1803. The case where P lies on
the line ABC is found in Pappus’ Collection.)

Find the lengths of the medians of a triangle having sides a, b, c.
Find the lengths of the angle bisectors of a triangle having sides a, b, c.

Give a direct proof of the Steiner-Lehmus Theorem: If the bisectors of the base
angles of a triangle are equal, the triangle is isosceles. (This problem was
proposed in 1840 by D. C. Lehmus (1780-1863) to Jacob Steiner (1796-1863).)

Show that the sum of the squares of the distances of the vertex of the right angle
of a right triangle from the two points of trisection of the hypotenuse is equal
to 3 the square of the hypotenuse.

. If A, B, C are three collinear points and a, b, ¢ are the tangents from A4, B, C

to a given circle, then
a*BC + b*CA + ¢*AB + BC-CA- AB = 0.
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19. If A, B, C, D, O are any five coplanar points, show that

(a) sin AOD sin BOC + sin BOD sin COA + sin COD sin AOB = 0.
(b) AAOD ABOC + ABOD ACOA + ACOD AAOB = 0.

20. Using 19 (a), prove Ptolemy’s Theorem: If ABCD is a cyclic quadrilateral, then
AD - BC + AB- CD = AC - BD.

21. If O is any point in the plane of triangle 4BC, show that
AOBC + AOCA + NOAB = AABC.

22. If P is any point in the plane of the parallelogram 4BCD, show that APAB
+ APCD = AABC.

23. If A, B, C, D, P, Q are any six distinct collinear points, show that

(iF - 70)/(AB - AT+ AD) + (BF - BOWGT 5D B
+ (CP-CQ)/(CD-CA- CB) + (DP- DQ)/(DA - DB- DC) = 0.

24. Generalize Problem 23 for n points A, B,...and n — 2 points P, Q, . ...
25. Complete the proof of Theorem 2.1.10.

2.2 INFINITE ELEMENTS

Another innovation of modern elementary geometry is the creation of some
ideal elements called * points at infinity,” ““the line at infinity” in a plane,
and “the plane 2t infinity ”’ in space. The purpose of introducing these ideal
elements is to eliminate certain bothersome case distinctions in plane and
solid geometry which arise from the possibility of lines and planes being
either parallel or intersecting. It follows that with these ideal elements many
theorems can be given a single universal statement, whereas without these
ideal elements the statements have to be qualified to take care of various
exceptional situations. Subterfuges of this sort are common in mathematics.
Consider, for example, the discussion of quadratic equations in elementary
algebra. The equation x> — 2x + 1 = 0 actually has only the one root,x = 1,
but for the sake of uniformity it is agreed to say that the equation has two
equal roots, each equal to 1. Again, in order that the equation x> + x + 1 =0
have any root at all, it is agreed to extend the number system so as to include
imaginary numbers. With these two conventions—that a repeated root is
to count as two roots and that imaginary roots are to be accepted equally
with real roots—we can assert as a universal statement that “‘every quadratic
equation with real coefficients has exactly two roots.”

The introduction into geometry of the notion of points at infinity is
usually credited to Johann Kepler (1571-1630), but it was Gérard Desargues
(1593-1662) who, in a treatment of the conic sections (his Brouillon projet)
published in 1639, first used the idea systematically. This work of Desargues
marks the first essential advance in synthetic geometry since the time of the
ancient Greeks.

Restricting ourselves for the time being to plane geometry, consider two
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lines /; and /,, where /; is held fast while /, rotates about a fixed point O
in the plane but not on line /;. As /, approaches the position of parallelism
with /;, the point P of intersection of /; and /, recedes farther and farther
along line /;, and in the limiting position of parallelism the point P ceases
to exist. To accommodate this exceptional situation, we agree to augment
the set of points op /; by an ideal point, called the point at infinity on [,
and we say that when /; and /, are parallel they intersect in this ideal point
on /;.

If our introduction of an ideal point at infinity on a line is not to create
more exceptions than it removes, it must be done in such a way that two
distinct points, ordinary or ideal, determine one and only one line, and such
that two distinct lines intersect in one and only one point. As a first con-
sequence of this we see that two parallel lines must intersect in the same
ideal point, no matter in which direction the lines are traversed.

Suppose /,; and /, are two parallel lines intersecting in the ideal point I,
and let O be any ordinary point not on /; or /,. Since O and I are to deter-
mine a line /5, and since /; cannot intersect /; or /, a second time, we see
that /; must be the parallel to /; and /, through point O. That is, the ideal
point I lies on all three of the parallel lines /;, /,, l;, and, by the same
argument, on all lines parallel to /,. Thus the members of a family of
parallel lines must share a common ideal point at infinity.

It is easy to see that a different ideal point must be assigned for a different
family of parallel lines. For let line m,; cut line /; in an ordinary point P,
and let m, be a line parallel to m,. Then m; and m, intersect in an ideal
point J which must be distinct from I, since otherwise the distinct lines
m, and /;, would intersect in the two points P and 1.

Now consider two distinct ideal points, / and J. The line / which they are
to determine cannot pass through any ordinary point P of the plane. For
if it did, then line /;, determined by P and I and line /, determined by P
and J would be a pair of distinct ordinary lines each of which would be
contained in line / because of the collinearity of P, I, J. It follows that the
line / determined by a pair of ideal points can contain only ideal points
and must therefore be an ideal line, which we call a line at infinity.

Finally, we see that in the plane there can be only one line at infinity.
For if /; and /, should be two distinct lines at infinity, these lines would
have to intersect in an ideal point I. A line /; passing through an ordinary
point O and not passing through / would have to intersect /; and /, in distinct
ideal points J and K respectively. The line through J and K would then
contain the ordinary point O, which we have seen is impossible.

The above discussion leads to the following convention and theorem.

2.2.1 CONVENTION AND DEFINITIONS. We agree to add to the points of
the plane a collection of ideal points, called points at infinity, such that

1. each ordinary line of the plane contains exactly one ideal point,
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2. the members of a family of parallel lines in the plane share a common
ideal point, distinct families having distinct ideal points.

The collection of added ideal points is regarded as an ideal line, called
the line at infinity, which contains no ordinary points.

The plane, augmented by the above ideal points, will be referred to as
the extended plane.

2.2.2 THEOREM. In the extended plane, any two distinct points determine
one and only one line and any two distinct lines intersect in one and only one
point.

If a point P recedes indefinitely along the line determined by two ordinary
points A and B, then AP/PB approaches the limiting value — 1. This moti-
vates the following definition.

223 DerINITION. If 4 and B are any two ordinary points, and [ the
ideal point, on a given line, then we define AI/IB to be —1.

The reader may care to supply an analysis leading to the following con-
vention, definitions, and theorem for three-dimensional space.

2.2.4 CONVENTION AND DEFINITIONS. We agree to add to the points of
space a collection of ideal points, called points at infinity, and ideal lines,
called lines at infinity, such that

1. each ordinary line of space contains exactly one ideal point,

2. the members of a family of parallel lines in space share a common

ideal point, distinct families having distinct ideal points,

each ordinary plane of space contains exactly one ideal line,

4. the members of a family of parallel planes in space share a common
ideal line, distinct families having distinct ideal lines,

5. the ideal line of an ordinary plane in space consists of the ideal points
of the ordinary lines of that plane.

w

The collection of added ideal points and ideal lines is regarded as an ideal
plane, called the plane at infinity, which contains no ordinary points or lines.

Three-dimensional space augmented by the above ideal elements, will be
referred to as extended three-dimensional space.

2.2.5 THEOREM. In extended three-dimensional space, any two distinct co-
planar lines intersect in one and only one point, any non-incident line and
plane intersect in one and only one point, any three non-coaxial planes (that
is, planes not sharing a common line) intersect in one and only one point,
any two distinct planes intersect in one and only one line, any two distinct
points determine one and only one line, any two distinct intersecting lines
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determine one and only one plane, any non-incident point and line determine
one and only one plane, any three non-collinear points determine one and only
one plane.

There still remains the important matter of whether the above conventions
can ever lead to a contradiction. One is reminded of efforts to extend the
concept of quotient so as to include fractions having zero denominators.
We shall later show that our conventions about infinite elements cannot
lead to any contradiction.

PROBLEMS

1. Develop an analysis leading to Convention 2.2.4 and Theorem 2.2.5.

2. Which of the following statements are true for the ordinary plane and which are
true for the extended plane?
(a) There is a one-to-one correspondence between the lines through a fixed
point O and the points of a fixed line /, not passing through O, such that cor-
responding lines and points are in incidence.
(b) The bisector of an exterior angle of an ordinary triangle divides the opposite
side externally in the ratio of the adjacent sides.
(c) Every straight line possesses one and only one ideal point.
(d) Every straight line possesses infinitely many ordinary points.
(e) If a triangle is the figure determined by any three non-concurrent straight
lines, then every triangle encloses a finite area.
(f) If parallel lines are lines lying in the same plane and having no ordinary point
in common, then through a given point O there passes one and only one line
parallel to a given line / not containing O.
(g) If A and B are distinct ordinary points and r is any real number, there is a
unique point P on line AB such that 4P/PB = r.

3. Translate the following theorems of ordinary three-dimensional space into the
language of infinite elements, and then supply simple proofs.
(a) Through a given point there is one and only one plane parallel to a given
plane not containing the given point.
(b) Two lines which are parallel to a third line are parallel to each other.
(c) If a line is parallel to each of two intersecting planes it is parallel to their
line of intersection.
(d) If a line is parallel to the line of intersection of two intersecting planes, then
it is parallel to each of the two planes.
(e) If aline!/is parallel to a plane p, then any plane containing / and intersecting
p, cuts p in a line parallel to /.
(f) Through a given line one and only one plane can be passed parallel to a
given skew line.
(g) Through a given point one and only one plane can be passed parallel to each
of two skew lines, neither of which contains the given point.
(h) All the lines through a point and parallel to a given plane lie in a plane
parallel to the first plane.
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(i) If a plane contains one of two parallel lines but not the other, then it is
parallel to the other.
(j) The intersection of a plane with two parallel planes are parallel lines.

4. Define prism and cylinder in terms of pyramid and cone respectively.

5. If A, B, C, P, Q are any five collinear points, show that

(AP - AQ)/(AB - AC) + (BP - BQ)/(BC - BA) + (CP- CQ)/(CA - CB) = 1.
6. If A, B, C, D, P are any five collinear points, show that

AP|(AB- AC - AD) + BP/(BC -BD - BA) + CP((CD-CA-CB)
+ DP/(DA - DB DC) = 0.

7. Generalize Problem 5 for n points 4, B, ... and n — 1 points P, Q, ....

8. Generalize Problem 6 for n points A, B, ... and n — k points P, Q, ...,
where 1 < k <n — 1.

2.3 THE THEOREMS OF MENELAUS AND CEVA

The theorems of Menelaus and Ceva, in their original versions, are quite
old, for the one dates back to ancient Greece and the other to 1678. It is
when they are stated in terms of sensed magnitudes that they assume a
particularly modern appearance.

Menelaus of Alexandria was a Greek astronomer who lived in the first
century A.D. Though his works in their original Greek are all lost to us,
we know of some of them from remarks made by later commentators, and
his three-book treatise Sphaerica has been preserved for us in the Arabic.
This work throws considerable light on the Greek development of trigo-
nometry. Book I is devoted to establishing for spherical triangles many of the
propositions of Euclid’s Elements that hold for plane triangles, such as the
familiar congruence theorems, theorems about isosceles triangles, and so on.
In addition, Menelaus establishes the congruence of two spherical triangles
having the angles of one equal to the angles of the other (for which there
is no analogue in the plane) and the fact that the sum of the angles of a
spherical triangle is greater than two right angles. Book II contains theorems
of interest in astronomy. In Book III is developed the spherical trigonometry
of the time, largely deduced from the spherical analogue of the plane prop-
osition now commonly referred to as Menelaus’ Theorem. Actually, the
plane case is assumed by Menelaus as well known and is used by him to
establish the spherical case. A good deal of spherical trigonometry can be
deduced from the spherical version of the theorem by taking special triangles
and special transversals. L. N. M. Carnot made the theorem of Menelaus
basic in his Essai sur la théorie des transversales of 1806.

Though the theorem of Ceva is a close companion theorem to that of
Menelaus, it seems to have eluded discovery until 1678, when the Italian
Giovanni Ceva (ca. 1647-1736) published a work containing both it and
the then apparently long forgotten theorem of Menelaus.

The theorems of Menelaus and Ceva, in their modern dress, are powerful
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theorems, and they deal elegantly with many problems involving collinearity
of points and concurrency of lines. We now turn to a study of these two
remarkable theorems. The reader should observe how the convention as to
points at infinity eliminates the separate consideration of a number of
otherwise exceptional situations.

2.3.1 DEerFINITION. A point lying on a side line of a triangle, but not
coinciding with a vertex of the triangle, will be called a menelaus point of
the triangle for this side.

2.3.2 MENELAUS’ THEOREM. A necessary and sufficient condition for three
menelaus points D, E, F for the sides BC, CA, AB of an ordinary triangle
ABC 1o be collinear is that

(BD/DC)(CE/EA)(AF/FB) = —1.

Necessity. Suppose (see Figure 2.3a) D, E, F are collinear on a line /

Figure 2.3a

C D

which is not the line at infinity. Drop perpendiculars p, g, r on / from A,
B, C. Then, disregarding signs,

BD|/DC = gfr, CE|[EA ='r|p, AF|FB = p/q.
It follows that
(BD/DC)(CE/EA)(AF/FB) = +1.

Since, however, / must cut one or all three sides externally, we see that we
can have only the — sign. If / is the line at infinity, the proof is simple.
Sufficiency. Suppose

(BD/DC)(CE/EA)(AF|FB) = —1

and let EF cut BC in D'. Then D’ is a menelaus point and, by the above,
(BD'| D'C)(CE|/EA)(AF|FB) = —1.

It follows that BD/DC = BD'/D'C, or that D = D'. That is, D, E, F are

collinear.

64 Modern Elementary Geometry



2.3.3 TRIGONOMETRIC FORM OF MENELAUS’ THEOREM. A necessary and
sufficient condition for three menelaus points D, E, F for the sides BC, CA,
AB of an ordinary triangle ABC to be collinear is that

(sin BAD/sin DAC)(sin CBE/sin EBA)(sin ACF/sin FCB) = —1.

For we have, by Theorem 2.1.9,

BD/DC = (AB sin BAD)/(AC sin DAC),

CE EA = (BC sin CBE)/(BA sin EBA),

AF|FB = (CA sin ACF)/(CB sin FCB).
It follows that

(sin BAD/sin DAC)(sin CBE/sin EBA)(sin ACF/sin FCB) = —1
if and only if
(BD/DC)(CE|EA)(AFJFB) = —1.

Hence the theorem.
2.3.4 DEFINITION. A line passing through a vertex of a triangle, but not
coinciding with a side of the triangle, will be called a cevian line of the
triangle for this vertex. A cevian line will be identified by the vertex to which
it belongs and the point in which it cuts the opposite side, as cevian line

AD through vertex A of triangle ABC and cutting the opposite side BC in
the point D.

2.3.5 CEVA’S THEOREM. A necessary and sufficient condition for three
cevian lines AD, BE, CF of an ordinary triangle ABC to be concurrent is that

(BD/DC)(CE/EA)(AF/FB) = +1.
Necessity. Suppose (see Figure 2.3b) AD, BE, CF are concurrent in P.

M A N

Figure 2.3b

B D C

Without loss of generality we may assume that P does not lie on the parallel
through 4 to BC. Let BE, CF intersect this parallel in N and M. Then,
disregarding signs,
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BD|DC = AN/MA, CE|EA = BC/AN, AF|FB = MA/BC,
whence
(BD/DC)(CE|/EA)(AF|FB) = +1.

That the sign must be + follows from the fact that either none or two of
the points D, E, F divide their corresponding sides externally.
Sufficiency. Suppose

(BD/DC)(CE|/EA)(AF/FB) = +1

and let BE, CF intersect in P and draw AP to cut BC in D’. Then AD' is a
cevian line. Hence, by the above, we have

(BD'|D'C)(CE/EA)(AF/FB) = +1.
It follows that BD'/D'C = BD/DC, or that D= D'. That is, AD, BE, CF

are concurrent.

2.3.6 TRIGONOMETRIC FORM OF CEVA’S THEOREM. A necessary and sufficient
condition for three cevian lines AD, BE, CF of an ordinary triangle ABC to
be concurrent is that

(sin BAD/sin DAC)(sin CBE/sin EBA)(sin ACF/sin FCB) = +1.

The reader can easily supply a proof similar to that given for Theorem
2.3.3.

PROBLEMS

1. Supply a proof of Theorem 2.3.6.
2. Prove the “necessary” part of Menelaus’ Theorem by drawing a line (see
Figure 2.3a) through C parallel to DEF to cut ABin L.

3. Prove the ‘““necessary’ part of Menelaus’ Theorem using the feet of the
perpendiculars from the vertices of the triangle on any line perpendicular to
the transversal.

4. Derive the ‘“necessary’ part of Ceva’s Theorem by applying Menelaus’
Theorem (see Figure 2.3b) to triangle ABD with transversal CPF and to triangle
ADC with transversal BPE.

5. Points E and F are taken on the sides CA, 4B of a triangle 4ABC such that

CE/EA = AFJFB = k. If EF cuts BC in D, show that CD = k?BD.

. In Figure 2.3b, prove that PD/AD + PE/BE + PF/CF = 1.

. In Figure 2.3b, prove that AP/AD + BP/BE + CP/CF = 2.

. In Figure 2.3b, prove that AF/FB + AE|EC = AP|PD.

. If the sides AB, BC, CD, DA of a quadrilateral ABCD are cut by a transversal
in the points 4’, B’, C’, D’ respectively, show that

O 0 N

66 Modern Elementary Geometry



10. If a transversal cuts the sides 4B, BC, CD, DE, ... of an n-gon ABCDE - - -
in the points 4’, B’, C’, D’, ..., show that

(This is a generalization of Menelaus’ Theorem.)
11. If on the sides AB, BC, CD, DA of a quadrilateral ABCD points A’, B, C’, D’
are taken such that
AA -BB' - CC’-DD' = A’B-BC-C'D- DA,
show that 4’B’ and C’D’ intersect on AC, and 4’D’ and B’C’ intersect on BD.
12. Let the sides AB, BC, CD, DA of a nonplanar quadrilateral ABCD be cut by a
plane in the points 4°, B’, C’, D’. Show that
AA -BB' - CC’'-DD' = A'B-BC-C'D-D'A.

13. Let D’, E’, F’ be menelaus points on the sides B’C’, C’A’, A’B’ of a triangle
A’B’'C’, and let O be a point in space not in the plane of triangle A’B’C’. Show
that points D’, E’, F’ are collinear if and only if

(sin B’OD’[sin D’OC’)(sin C’OE’[sin E'OA’)(sin A’OF’[sin F'OB’) = —1.

14. Let D, E, F be three menelaus points on the sides BC, CA, AB of a spherical
triangle ABC. Show that D, E, Flie on a great circle of the sphere if and only if

(sin ﬁ)/sin D’C\‘)(sin @/sin Ef\i)(sin Z;"/sin EE) = —1.

(This is the theorem that Menelaus used in Book III of his Sphaerica.)

15. If the lines joining a point O to the vertices of a polygon ABCD - - - of an odd
number of sides meet the opposite sides AB, BC, CD, DE, . .. in the points
A, B,C’,D,...,show that

(AA’|A’B)(BB'|B'C)(CC’|C’'D)DD’'|D’E) - - - = 1.

(This is a generalization of Ceva’s Theorem.)

24 APPLICATIONS OF THE THEOREMS OF
MENELAUS AND CEVA

We illustrate the power of the theorems of Menelaus and Ceva by now
using them to establish three useful and highly attractive theorems. Many
further illustrations will be found among the problems at the end of this
section.

2.41 TueoreM. If AD, BE, CF are any three concurrent cevian lines of
an ordinary triangle ABC, and if D’ denotes the point of intersection of BC
and FE, then D and D' divide BC, one internally and one externally, in the
same numerical ratio.

Since AD, BE, CF are concurrent cevian lines (see Figure 2.4a) we have,
by Ceva’s Theorem, '

(BD/DC)(CE/EA)AF|FB) = +1.

2.4 Applications of the Theorems of Menelaus and Ceva
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Figure 2.4a E

B D C D’

Since D', E, F are collinear menelaus points we have, by Menelaus’ Theorem,
(BD'|D'C)(CE/EA)(AF|/FB) = —1.
It follows that
BD/DC = —BD'|D'C,
whence D and D’ divide BC, one internally and one externally, in the same
numerical ratio.

242 DerINITIONS. Two triangles ABC and A'B’C’ are said to be copolar
if AA’, BB’, CC’ are concurrent; they are said to be coaxial if the points
of intersection of BC and B'C’, CA and C'A’, AB and A’B’ are collinear.

2.4.3 DESARGUES’ TWO-TRIANGLE THEOREM. Copolar triangles are coaxial,
and conversely.

Figure 2.4b

Let the two triangles (see Figure 2.4b) be ABC and A’B’C’. Suppose AA’,
BB’, CC’ are concurrent in a point O. Let P, Q, R be the points of inter-
section of BC and B'C’, CA and C’'A’, AB and A'B’. Considering the triangles
BCO, CAO, ABO in turn, with the respective transversals B'C'P, C'A'Q,
A'B'R, we find, by Menelaus’ Theorem,
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(BP/PC)(CC'/C’O)(OB'/|B'B) = —1,
(CDIQAYAR'| ATONOT'|CT) = 1,

(AR/RB)(BB'/|B'O)(0A'|A'A) = —1.

Setting the product of the three left members of the above equations equal
to the product of the three right members, we obtain

(BP|PC)(CQ/QAXARIRB) = —1,

whence P, Q, R are collinear. Thus copolar triangles are coaxial.

Conversely, suppose P, Q, R are collinear and let O be the point of inter-
section of A4’ and BB’. Now triangles AQA’ and BPB'’ are copolar, and
therefore coaxial. That is, O, C, C’ are collinear. Thus coaxial triangles are
copolar.

2.4.4 PASCAL’S ‘““MYSTIC HEXAGRAM ~’ THEOREM FOR A CIRCLE. The points
L, M, N of intersection of the three pairs of opposite sides AB and DE, BC
and EF, FA and CD of a (not necessarily convex) hexagon ABCDEF inscribed
in a circle lie on a line, called the Pascal line of the hexagon.

Let X, Y, Z (see Figure 2.4c) be the points of intersection of AB and CD,
CD and EF, EF and AB, and consider DE, FA, BC as transversals cutting
the sides of triangle XYZ. By the Theorem of Menelaus we have

(XLJLZ)(ZEJEY)(YD|DX) = —1,

(XB/BZ)(ZM|MY)(YC/CX) = —1.

Setting the product of the three left members of the above equations equal
to the product of the three right members and rearranging the ratios, we
obtain

o BEDEDHEDED--
LZ MY NX)\XC-XD)\YE-YF) \ZB-Z4 '
X
Figure 2.4c

2.4 Applications of the Theorems of Menelaus and Ceva

69



But
XB-X4=XC- XD,
YC- YD = YE- YF,
ZE-ZF=ZB - ZA,

whence each of the last three factors in parentheses in (1) has the value 1.
It follows that

(XLILZYZM/MY)(YN/NX) = 1,

or L, M, N are collinear.

Should vertex X, say, of triangle XYZ be an ideal point, so that CD is
parallel to AB, the above proof fails. But in this case we may choose a point
C’ on the circle and near to C, and consider the hexagon ABC’'DEF as C’
approaches C along the circle. Since the Pascal line exists for all positions
of C’ as it approaches C, the Pascal line also exists in the limit.

Desargues’ two-triangle theorem appears to have been given by Desargues
in a work on perspective in 1636, three years before his Brouillon projet was
published. This theorem has become basic in the present-day theory of
projective geometry, and we shall meet it again in later chapters. There we
shall also encounter so-called non-Desarguesian geometries, or plane geom-
etries in which the two-triangle theorem fails to hold. The great French
geometer, Jean-Victor Poncelet (1788-1867), made Desargues’ two-triangle
theorem the foundation of his theory of homologic figures.

Blaise Pascal (1623-1662) was inspired by the work of Desargues and
was in possession of his ““mystic hexagram” theorem for a general conic
when he was only 16 years old. The consequences of the ““ mystic hexagram
theorem are very numerous and attractive, and an almost unbelievable
amount of research has been expended on the configuration. There are
5!/2 = 60 possible ways of forming a hexagon from 6 points on a circle,
and, by Pascal’s theorem, to each hexagon corresponds a Pascal line. These
60 Pascal lines pass three by three through 20 points, called Steiner points,
which in turn lie four by four on 15 lines, called Pliicker lines. The Pascal
lines also concur three by three in another set of points, called Kirkman
points, of which there are 60. Corresponding to each Steiner point, there
are three Kirkman points such that all four lie upon a line, called a Cayley
line. There are 20 of these Cayley lines, and they pass four by four through
15 points, called Salmon points. There are many further extensions and
properties of the configuration, and the number of different proofs that
have been supplied for the ““ mystic hexagram * theorem itself is now legion.
Some of these alternative proofs will be met in later parts of the book, as
will some of the numerous corollaries of the theorem.
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PROBLEMS

. Using Ceva’s Theorem prove that: (a) The medians of a triangle are con-

current. (b) The internal angle bisectors of a triangle are concurrent. (c) The
altitudes of a triangle are concurrent.

. If D, E, F are the points of contact of the inscribed circle of triangle ABC

with the sides BC, CA, AB respectively, show that AD, BE, CF are concurrent.
(This point of concurrency is called the Gergonne point of the triangle, after
J. D. Gergonne (1771-1859), founder-editor of the mathematics journal
Annales de mathématiques. Just why the point was named after Gergonne
seems not to be known.)

. Let D, E, F be the points on the sides BC, CA, AB of triangle ABC such that

D is half way around the perimeter from A, E half way around from B, and F
half way around from C. Show that AD, BE, CF are concurrent. (This point of
concurrency is called the Nagel point of the triangle, after C. H. Nagel (1803—
18R2), who considered it in a work of 1836.)

. Let X and X’ be points on a line segment MN symmetric with respect to the

midpoint of MN. Then X and X’ are called a pair of isotomic points for the
segment MN. Show that if D and D’, E and E’, F and F’ are isotomic points
for the sides BC, CA, AB of triangle ABC, and if AD, BE, CF are concurrent,
then AD’, BE’, CF’ are also concurrent. (Two such related points of con-
currency are called a pair of isotomic conjugate points for the triangle, a term
introduced by John Casey in 1889.)

. Show that the Gergonne and Nagel points of a triangle are a pair of isotomic

conjugate points for the triangle. (See Problems 2, 3, 4 for the required
definitions.)

. If, in Problem 4, D, E, F are collinear, show that D’, E’, F’ are also collinear.

(Two such related lines as DEF and D’E’F’ are sometimes called a pair of
reciprocal transversals of the triangle ABC, a name used by G. de Longchamps
in 1890.)

. Let OX and OX’ be rays through vertex O of angle MON symmetric with

respect to the bisector of angle MON. Then OX and OX” are called a pair of
isogonal lines for the angle MON. Show that if AD and AD’, BE and BE’,
CF and CF"’ are isogonal cevian lines for the angles 4, B, C of a triangle ABC,
and if AD, BE, CF are concurrent, then AD’, BE’, CF’ are also concurrent.
(This theorem was given by J. J. A. Mathieu in 1865, and was extended to
three-space by J. Neuberg in 1884. Two such related points of concurrency are
called a pair of isogonal conjugate points for the triangle. The orthocenter and
circumcenter of a triangle are a pair of isogonal conjugate points. The incenter
is its own isogonal conjugate. The isogonal conjugate of the centroid is called
the symmedian point of the triangle; it enjoys some very attractive properties.)

. If, in Problem 7, D, E, F are collinear, show that D’, E’, F’ are also collinear.

9. Let AD, BE, CF be three concurrent cevian lines of triangle ABC, and let the

10.

circle through D, E, F intersect the sides BC, CA, AB again in D’, E’, F’. Show
that AD’, BE’, CF’ are concurrent.

Show that the tangents to the circumcircle of a triangle at the vertices of the
triangle intersect the opposite sides of the triangle in three collinear points.

2.4 Applications of the Theorems of Menelaus and Ceva
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

If AD, BE, CF are three cevian lines of an ordinary triangle 4ABC, concurrent
in a point P, and if EF, FD, DE intersect the sides BC, CA, AB of triangle ABC
in the points D’, E’, F’, show that D’, E’, F’ are collinear on a line p. (J. J. A.
Mathieu, in 1865, called the point P the trilinear pole of the line p, and the line p
the trilinear polar of the point P, for the triangle ABC. The trilinear polar of
the orthocenter of a triangle is called the orthic axis of the triangle.)

Prove that the external bisectors of the angles of a triangle intersect the
opposite sides in three collinear points.

Prove that two internal angle bisectors and the external bisector of the third
angle of a triangle intersect the opposite sides in three collinear points.

Two parallelograms ACBD and A’CB’D’ have a common angle at C. Prove
that DD’, A’B, AB’ are concurrent.

Let ABCD be a parallelogram and P any point. Through P draw lines parallel
to BC and AB to cut BA and CD in G and H and AD and BC in E and F.
Prove that the diagonal lines EG, HF, DB are concurrent.

If equilateral triangles BCA’, CAB’, ABC’ are described externally upon the
sides BC, CA, AB of triangle ABC, show that 44’, BB’, CC’ are concurrent
in a point P. (The point P is the first notable point of the triangle discovered
after Greek times. If the angles of triangle ABC are each less than 120°, then
P is the point the sum of whose distances from 4, B, C is a minimum. The
minimization problem was proposed to Torricelli by Fermat. Torricelli
solved the problem and his solution was published in 1659 by his student
Viviani.)

Show that, in Problem 16, AA’, BB’, CC’ are still concurrent if the equi-
lateral triangles are described internally upon the sides of the given triangle
ABC. (The two points of concurrency of Problems 16 and 17 are known as the
isogonic centers of triangle ABC. The isogonal conjugates of the isogonic
centers are called the isodynamic points of the triangle, a term given by J.
Neuberg in 1885.)

Let ABC be a triangle right-angled at B, and let BCDD’ and BAEE’ be squares
drawn on BC and BA externally to the triangle ABC. Prove that CE and AD
intersect on the altitude of triangle ABC through B.

If the sides of a triangle ABC are cut by a transversal in D, E, F, all exterior to
the circumcircle of the triangle, show that the product of the tangent lengths
from D, E, F to the circumcircle is equal to AF - BD - CE.

A transversal cuts the sides BC, CA, AB of a triangle ABCinD,E,F. P,Q,R
are the midpoints of EF, FD, DE, and AP, BQ, CR intersect BC, CA, AB in
X, Y, Z. Show that X, Y, Z are collinear.

Let O and U be two points in the plane of triangle ABC. Let A0, BO, CO
intersect the opposite sides BC, CA, ABin P, Q, R. Let PU, QU, RU intersect
OR, RP, PQ respectively in X, Y, Z. Show that AX, BY, CZ are concurrent.

Let AA’, BB, CC’ be three concurrent cevian lines for triangle ABC. Let 1
be a point on BC, 2 the intersection of 1B’ and BA, 3 of 24’ and AC, 4 of 3C’
and CB, 5 of 4B’ and BA, 6 of 54’ and AC, 7 of 6C’ and CB. Show that point 7
coincides with point 1. (This interesting closure theorem is due to O. Nehring,
1942.)
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2.6 CROSS RATIO

Another topic which originated with the ancient Greeks, and of which
certain aspects were very fully investigated by them, is that now called
‘““cross ratio.” In the nineteenth century this concept was revived and con-
siderably improved with the aid of sensed magnitudes and with a highly
convenient notation rendered possible by sensed magnitudes. The modern
development of the subject is due, independently of each other, to Mobius
(in his Der barycentrische Calcul of 1827) and Michel Chasles (in his Apercu
historique sur lorigine et le développement des méthodes en géométrie of 1829-
1837, his Traité de géométrie supérieure of 1852, and his Traité des sections
coniques of 1865). A treatment of the cross-ratio concept freed of metrical
considerations was made by Carl George von Staudt (in his Beitrdge zur
Geometrie der Lage of 1847). The cross-ratio concept has become basic in
projective geometry, where its power and applicability are of prime im-
portance.

2.5.1 DEFINITION AND NOTATION. If 4, B, C, D are four distinct points
on an ordinary line, we designate the ratio of ratios

(AC/CB)(AD|DB)

by the symbol (4B,CD), and call it the cross ratio (or anharmonic ratio, or
double ratio) of the range of points 4, B, C, D, taken in this order.

Essentially the notation (4B,CD) was introduced by Mobius in 1827. He
employed the term Doppelschnitt-Verhdltniss, and this was later abbreviated
by Jacob Steiner to Doppelverhdltniss, the English equivalent of which is
double ratio. Chasles used the expression rapport anharmonique (anharmonic
ratio) in 1837, and William Kingdon Clifford coined the term cross ratio
in 1878. Staudt used the term Wurf (throw).

The cross ratio of four collinear points depends upon the order in which
the points are selected. Since there are twenty-four permutations of four
distinct objects, there are twenty-four ways in which a cross ratio of four
distinct collinear points may be written. These cross ratios, however, are
not all different in value. In fact, we proceed to show that the twenty-four
cross ratios may be arranged into six sets of four each, such that the cross
ratios in each set have the same value. Indeed, if one of these values be
denoted by r, the others are 1/r, 1 —r, 1/(1 —r), (r — 1)/r, and r/(r — 1).

2.5.2 THEOREM. If, in the symbol (AB,CD) = r for the cross ratio of four
distinct points, (1) we interchange any two of the points and at the same time
interchange the other two points, the cross ratio is unaltered, (2) we interchange
only the first pair of points, the resulting cross ratio is 1/r, (3) we interchange
only the middle pair of points, the resulting cross ratio is 1 —r.

For the first part we must show that

(BA,DC) = (CD,AB) = (DC,BA) = (AB,CD) =,

2.5 Cross Ratio
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which is easily accomplished by expanding each of the involved cross ratios.
For the second part we must show that

(BA,CD) = 1/r,

and this too is easily accomplished by expansion.
For the third part we must show that

(AC,BD)=1—r.

This may be accomplished neatly by dividing the Euler identity (Theorem
2.1.5),

AD-BC+ BD-CA+CD- AB=0,
by AD - BC, obtaining
1 + (BD - CA)/(AD - BC) + (CD - AB)/(AD - BC) =0,
or, rearranging,
(4B/BC)/(AD|DPC) = 1 — (AC/CB)/(AD/DB),

whence (AC,BD) = 1 — (4B,CD).
2.5.3 THEOREM. If (AB,CD) =r, then

(1) (AB,CD) = (BA,DC) = (CD,AB) = (DC,BA) = r

(2) (BA,CD) = (AB,DC) = (DC,AB) = (CD,BA) = I/,

(3) (AC,BD) = (BD,AC) = (CA,DB) = (DB,CA) = 1 —r,
(4) (CA,BD) = (DB,AC) = (AC,DB) = (BD,CA) = 1/ —1),
(5) (BC,AD) = (AD,BC) = (DA,CB) = (CB,DA) = (r— I)/r,
(6) (CB,AD) = (DA,BC) = (AD,CB) = (BC,DA) = r/(r — 1).

The equalities (1) are guaranteed by the first part of Theorem 2.5.2. The
equalities (2) are obtained from those in (1) by applying the operation of
the second part of Theorem 2.5.2; the equalities (3) are obtained from those
in (1) by applying the operation of the third part of Theorem 2.5.2; the
equalities (4) are obtained from those in (3) by applying the operation of
the second part of Theorem 2.5.2; the equalities (5) are obtained from those
in (2) by applying the operation of the third part of Theorem 2.5.2; the
equalities (6) are obtained from those in (5) by applying the operation of
the second part of Theorem 2.5.2.

2.5.4 DEFINITION AND NOTATION. If VA, VB, VC, VD are four distinct
coplanar lines passing through an ordinary point ¥, we designate the ratio
of ratios

(sin AVC/sin CVB/(sin AVD|sin DVB)

by the symbol V(4B,CD), and call it the cross ratio of the pencil of lines
VA, VB, VC, VD, taken in this order. It is to be observed (see Theorem
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2.1.10) that this definition is independent of the positions of the points
A, B, C, D on their respective lines, so long as they are distinct from V.

2.5.5 THEOREM. If four distinct parallel lines a, b, c, d are cut by two
transversals in the points A, B, C, D and A’, B’, C’, D’ respectively, then
(AB,CD) = (A'B’',C'D").

This follows immediately from the fact that the segments cut off by the
parallel lines on one transversal are proportional to the corresponding
segments cut off on the other transversal.

25.6 DEerFINITION. The cross ratio of a pencil of four distinct parallel
lines, a, b, ¢, d is taken to be the cross ratio of the range 4, B, C, D cut off
by the parallel lines on any transversal to these lines.

We now state and prove the theorem which gives to cross ratio its singular
power in projective geometry.

2.5.7 THEOREM. The cross ratio of any pencil of four distinct lines is equal
to the cross ratio of the corresponding four points in which any ordinary
transversal cuts the pencil.

If the vertex of the pencil is a point at infinity, the theorem follows from
Definition 2.5.6.

Figure 2.5a

Suppose the vertex V of the pencil is not at infinity, and let 4, B, C, D
be the points in which the pencil is cut by an ordinary transversal (see
Figure 2.5a). Then, by Theorem 2.1.9,

AC/CB = (V4 sin AVC)/(VB sin CVB),
AD|DB = (VA sin AVD)/(VB sin DVB),
whence
(AC/CB)/(AD|DB) = (sin AVC/sin CVB)/(sin AVD/sin DVB).

It follows that (AB,CD) = V(AB,CD), and the theorem is established.

2.5 Cross Ratio
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PROBLEMS

1. If we extend the definition of the cross ratio of four collinear points so that two,
but no more than two, of the four points may coincide, show that given three
distinct collinear points A4, B, C there exists a unique point D collinear with
them such that (4B,CD) = r, where r has any real value or is infinite. Also
show that two points coincide if and only if r = 0, 1, or .

2. If A, B, C, D are four distinct collinear points, show that the pairs 4, B and C,
D do or do not separate each other according as (4B,CD) is negative or positive.

3. Given three distinct points A, B, C on a line /, construct a fourth point D collinear
with them such that (4B,CD) shall have a given value r.

4. If P, Q, R, S, T are collinear points, show that:

(@) (PQ,RT)(PQ,TS) = (PQ,RS).
(b) (PT,RSY(TQ,RS) = (PQ,RS).

5. 1f0, A, B, C, A, B’, C’ are collinear and if OU - OA’ = OB - OB’ = OC - OC’,
show that (4B’,BC) = (A’B,B'C’).

6. If (AB,CP) = m and (AB,CQ) = n, show that (AC,PQ) = (n — 1)/(m — 1).

7. Investigate the cases where two of the six values of the cross ratios of four
collinear points are equal.

8. Show that the six cross ratios of four collinear points can be represented by
cos? 8, csc28, —tan2#6, sec?6, sin26, —cot26. Show that 20 is the angle of
intersection of the circles described on AB and CD as diameters, it being sup-
posed that the points are in the order 4, C, B, D. (This result is due to J. Casey.)

2.6 APPLICATIONS OF CROSS RATIO

We first state a number of useful corollaries to Theorem 2.5.7. The proofs
can easily be supplied by the reader.

2.6.1 CoroLLARY. If A, B, C, D and A’, B’, C', D’ are two coplanar
ranges on distinct bases such that (AB,CD) = (A’B’,C'D’), and if AA’, BB/,
CC’ are concurrent, then DD’ passes through the point of concurrence.

2.6.2 CoroLLARY. If A, B, C, D and A’, B, C', D' are two coplanar
ranges on distinct bases such that (AB,CD) = (A’B',C'D’), and if A and A’
coincide, then BB’, CC’, DD’ are concurrent.

2.6.3 CoroLLARY. If VA, VB, VC, VD and V'A, V'B, V'C, V'D are two
coplanar pencils on distinct vertices V and V' such that V(AB,CD) =V’
(AB,CD), and if A, B, C are collinear, then D lies on the line of collinearity.

2.6.4 CoroLLARY. If VA, VB, VC, VD and V'A, V'B, V'C, V'D are
two coplanar pencils on distinct vertices V and V' such that V(AB,CD) =
V'(AB,CD), and if A lies on VV', then B, C, D are collinear.
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The next theorem, which is an immediate consequence of the elementary
angle relations in a circle, gives an important cross-ratio property of the
circle.

2.6.5 THeoreM. If A, B, C, D are any four distinct points on a circle,
and if V and V' are any two points on the circle, then V(AB,CD) = V'(AB,CD),
where VA, say, is taken as the tangent to the circle at A if V should coincide
with A.

2.6.6 DEFINITION AND NOTATION. If A, B, C, D are four distinct points
on a circle, and ¥V is any fifth point on the circle, we shall designate the
cross ratio V(AB,CD), which, by Theorem 2.6.5, is independent of the
position of ¥V, by the symbol (4B,CD), and we shall call it the cross ratio
of the cyclic range of points 4, B, C, D, taken in this order.

2.6.7 THeoreM. If A, B, C, D are four distinct points on a circle, then
(AB,CD) = e(AC/CB)/(AD/DB), where AC, CB, AD, DB are chord lengths,
and where e is —1 or +1 according as the pairs A, B and C, D do or do not
separate each other.

For, denoting the center of the circle by O and its radius by r, we have
AC = 2r sin(A0C/2) = 2r sin AVC, etc.,
whence
(AB,CD)

V(AB,CD) = (sin AVC/sin CVB)/(sin AVD/sin DVB)

= +(AC/CB)/(AD/DB).
The reader can easily show that we must take the minus sign if the pairs of
rays VA, VB and VC, VD separate each other, and that otherwise we must
take the plus sign.

We now illustrate the power of cross ratio by proving anew Desargues’
two-triangle theorem (Theorem 2.4.3) and Pascal’s ‘‘mystic hexagram”
theorem for a circle (Theorem 2.4.4). Further illustrations will be found
among the problems at the end of this section and in various other parts
of the book.

2.6.8 DESARGUES’ TWO-TRIANGLE THEOREM. Copolar triangles are coaxial,
and conversely.

Let the two triangles (see Figure 2.6a) be ABC and A’'B’'C’. Suppose AA’,
BB’, CC’ are concurrent in a point O. Let P, Q, R be the points of inter-
section of BC and B'C’, CA and C'A’, AB and A'B’. Let CC’ cut AB in X,
A’'B’ in X', and PQ in Y. Then, by successive applications of Theorem 2.5.7,

C(YP,QR) = (XB,AR) = O(XB,AR) = (X'B",A'R)
=C'(X'B",A'R) = C'(YP,QR).

2.6 Applications of Cross Ratio
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Figure 2.6a

Since Y lies on CC’, it follows (by Corollary 2.6.4) that P, Q, R are collinear.
Conversely, suppose P, Q, R are collinear. Then, again by successive
applications of Theorem 2.5.7,

(RA,XB) = C(RA,XB) = C(RQ,YP) = C'(RQ,YP) = (RA",X'B).

It now follows (by Corollary 2.6.2) that 44’, XX’ (or CC’), BB’ are con-
current.

2.6.9 PASCAL’S ‘““MYSTIC HEXAGRAM’’ THEOREM FOR A CIRCLE. The points
L, M, N of intersection of the three pairs of opposite sides AB and DE, BC
and EF, FA and CD of a (not necessarily convex) hexagon ABCDEF inscribed
in a circle lie on a line.

Let AF and ED (see Figure 2.6b) intersect in H, and EF and CD in K.
Then (by Theorem 2.6.5) A(EB,DF) = C(EB,DF), whence (by Theorem 2.5.7)
(EL,DH) = (EM,KF). It now follows (by Corollary 2.6.2) that LM, DK, HF
are concurrent, or that L, M, N are collinear.

D B

- X0
N7
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PROBLEMS

1. Supply proofs for Corollaries 2.6.1, 2.6.2, 2.6.3, and 2.6.4.

2. Prove Theorem 2.6.5.

3. Leta, b, ¢, d be four distinct fixed tangents to a given circle and let p be a variable
fifth tangent. If p cuts a, b, ¢, d in A, B, C, D, show that (4B,CD) is a constant
independent of the position of p.

4. Prove Brianchon’s Theorem for a circle: If ABCDEF is a (not necessarily convex)
hexagon circumscribed about a circle, then AD, BE, CF are concurrent.

5. If two transversals cut the sides BC, CA, AB of a triangle ABC in points P, Q,
Rand P’, Q’, R’, show that

(BC,PP)(CA,QQY(AB,RR’) = 1.

6. If A, B, C, D, A’, B’, C’, D', M, N are collinear, and if (44", MN) = (BB’,MN)
= (CC’,MN) = (DD’,MN), show that (4B,CD) = (A’B’,C’D’).

7. Prove Pappus’ Theorem: If 4, C, E and B, D, F are two sets of three points on
distinct lines, then the points of intersection of AB and DE, BC and EF, FA
and CD are collinear.

8. In a hexagon AC'BA'CB’, BB’, C’A, A’C are concurrent and CC’, A’B, B’'A
are concurrent. Prove that A4’, B'C, C’B are also concurrent.

2.7 HOMOGRAPHIC RANGES AND PENCILS

This section is devoted to a brief consideration of homographic ranges and
pencils.

2.7.1 DerINITIONs. If the points of two complete ranges are paired in
one-to-one correspondence such that the cross ratio of each four points of
one range is equal to the cross ratio of the corresponding four points of the
other range, then the two ranges are said to be homographic (to each other).

If the lines of two complete pencils are paired in one-to-one correspond-
ence such that the cross ratio of each four lines of one pencil is equal to the
cross ratio of the corresponding four lines of the other pencil, then the two
pencils are said to be homographic (to each other).

2.7.2 THeoreM. (1) If the joins of three distinct pairs of corresponding
points of two homographic ranges on distinct bases are concurrent in a point O,
then the joins of all pairs of corresponding points of the two ranges pass through
O. (2) If the intersections of three distinct pairs of corresponding lines of two
homographic pencils on distinct vertices are collinear on a line 1, then the inter-
sections of all pairs of corresponding lines of the two pencils lie on 1.

This theorem is an immediate consequence of Corollaries 2.6.1 and 2.6.3.

2.7.3 THeoreM. (1) If two homographic ranges on distinct bases have a
pair of corresponding points coincident, then the joins of all other pairs of
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corresponding points are concurrent. (2) If two homographic pencils on distinct
vertices have a pair of corresponding lines coincident, then the intersections of
all other pairs of corresponding lines are collinear.

This theorem is an immediate consequence of Corollaries 2.6.2 and 2.6.4.

2.7.4 THEOREM. A necessary and sufficient condition that two complete
ranges be homographic is that the points of the two ranges be paired in one-
to-one correspondence such that the signed distances x and X' of a variable
pair of corresponding points X and X' measured from fixed origins on the bases
of the two ranges be connected by a relation of the form

xx’ +sx +tx’+u=0,

where 1, s, t, u are real numbers and ru — st # 0.

Necessity. Suppose the ranges are homographic. Let 4 and 4’, B and B’,
C and C’ be three distinct fixed pairs of corresponding points and X and X’
an arbitrary pair of corresponding points of the two ranges. Then (4B,CX) =

(A'B',C'X"), or
(AC/CB)/(AX/XB) = (A'C'|C'B")/(A'X'|X'B),
or, letting corresponding lower case letters represent the signed distances

of the points from the fixed origins,

c—ab-x _ (—a)b—x)
b-dkx-a (' -c)x—a)’

which reduces to
rxx' +sx+tx'+u=0

where

(¢ —a)b—c)—(c—a) —C),
a(c—a)b' —c)—b( —a)b-o),

t =b(c—a)b —c)—alcd —a)b-o),
u=bal —a)b—c)—ba(c—a)b — ).

v o~
i

A little algebra shows that
ru—st=(c—a)c' —a)b— )b - )a—b)a - b),

which is different from zero since 4, B, C and A’, B’, C’ are distinct points

on their bases.
Sufficiency. Suppose the ranges are in one-to-one correspondence with

rxx’ +sx + tx’' +u=0, ru— st #0.

Then
X = —(sx + w)/(rx +t).
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Let A and A’, B and B’, C and C’, D and D’ be any four distinct pairs of
corresponding points. Now

ATITB (¢ —a)b — d)

AD DB (b —c)d —a)

(A'B',C'D) =

But
sc+u  sa+u _ (ru—st)c—a)
rc+t ra+t (re+t)(ra+t)’

¢ —a=-

with similar expressions for b’ — d’, b’ — ¢’, d’ — a’. Therefore

(¢ —a)¥' —d) _ (c—a)b—d)
& —c)d—d)” b-0d-a)’

since all other factors cancel. That is, (4'B’,C’'D’) = (AB,CD).

There are two classes of problems in the solution of which Theorem 2.7.3
is often applicable, namely: (1) those in which it is required to prove that
the locus of a variable point is a straight line, (2) those in which it is required
to prove that a variable straight line passes through a fixed point. In (1) we
obtain two homographic pencils having a common line, namely the line
joining the vertices of the pencils, and having the different positions of the
variable point as the intersections of pairs of corresponding lines of the
pencils. In (2) we obtain two homographic ranges having a common point,
namely the point of intersection of the bases of the ranges, and having the
different positions of the variable line as the joins of pairs of corresponding
points of the ranges. Some problems of this sort are found among those
appearing at the end of the section. Theorem 2.7.4 often furnishes an easy
way of showing that two complete ranges are homographic.

PROBLEMS

1. Prove that two ranges (pencils) which are homographic to the same range
(pencil) are homographic to each other.

2. A and B are two fixed points and X and X’ are two variable points on two given
lines intersecting in a point O. If OX + OX’ = OA + OB, show that the
locus of the point of intersection of AX” and BX is a straight line.

3. Given a variable triangle 4ABC whose sides BC, CA, AB pass through fixed
points P, Q, R respectively. If the vertices B and C move along given lines
through a point O collinear with Q and R, find the locus of vertex A.

4. Given a variable triangle ABC whose vertices 4, B, C move along fixed lines
D, q, r respectively. If the sides C4 and AB pass through given points on a line
I concurrent with g and r, show that side BC passes through a fixed point.

5. Three points F, G, H are taken on side BC of a triangle ABC. Through G a
variable line is drawn cutting AB and AC in L and M respectively. Prove that
the intersection K of FL and HM is a straight line passing through A.
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6. A point P, which moves along a given straight line, is joined to two fixed points
B and C, and the lines PB, PC cut another line in X and Y. Find the locus of
the point of intersection of BY and CX.

7. A, D, C are three fixed collinear points, E is a fixed point not on line ADC, B
is a variable point on line CE. The lines AE and BD intersect in Q, CQ and DE
intersect in R, BR and AC intersect in P. Show that P is a fixed point.

8. Let (4) and (4’) be two homographic ranges. If I corresponds to the point at
infinity on (4’) and J’ to the point at infinity on (4), show that (IX)(J'X")
is constant for all pairs of corresponding points X and X”.

9. If I and J’ are fixed points, and X and X’ are variable points, on two straight
lines, and if (IX)(J'X’) = constant, then X and X’ generate homographic
ranges in which I and J’ are the points corresponding to the points at infinity
on the two straight lines.

10. (a) Let a variable circle through a fixed point ¥ and cutting a fixed line /
not through V in a given angle 6 cut / in points P and P’, P lying to the left of
P’ when [ is considered as horizontal. Show that (P) and (P’) are homographic
ranges.
(b) Let J'VI be an isosceles triangle with base lying on / and having base angles
6, J’ lying to the left of 1. Show that (IP)(J'P’) = constant.

11. If the vertices of a polygon move on fixed concurrent lines, and all but one of
the sides pass through fixed points, show that this side and each diagonal will
pass through fixed points.

12. If each side of a polygon passes through one of a set of collinear points while
all but one of its vertices slide on fixed lines, show that the remaining vertex
and each intersection of two sides will describe lines.

13. Let four lines through a point V cut a circle in 4, A’; B, B’; C, C’; D, D’
respectively. Show that (4B,CD) = (A’B’,C’'D’).

2.8 HARMONIC DIVISION

Very important and particularly useful is the special cross ratio having the
value —1. Since, as we shall see, there is an intimate connection between
such a cross ratio and three numbers in harmonic progression, such a cross
ratio is referred to as a ““harmonic division.”

2.8.1 DeriNiTIONS. If 4, B, C, D are four collinear points such that
(AB,CD) = —1 (so that C and D divide AB one internally and the other
externally in the same numerical ratio), the segment 4B is said to be divided
harmonically by C and D, the points C and D are called harmonic conjugates
of each other with respect to 4 and B, and the four points 4, B, C, D are
said to constitute a harmonic range. If V(AB,CD) = —1, then VA, VB, VC,
VD are said to constitute a harmonic pencil.

2.8.2 THeEOREM. If C and D divide AB harmonically, then A and B divide
CD harmonically.
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For if (4B,CD) = —1, then (by Theorem 2.5.2(1)) so also does (CD,AB) =
-1

2.8.3 THEOREM. The harmonic conjugate with respect to A and B of the
midpoint of AB is the point at infinity on AB.

Let M be the midpoint of 4B. Then AM/MB = 1. It follows that if D
is the harmonic conjugate of M with respect to A and B we must have
AD|/DB = —1. Thus (see Definition 2.2.3) D is the point at infinity on line
AB.

The next two theorems furnish useful criteria for four collinear points
to form a harmonic range.

2.8.4 THEOREM. (AB,CD)= —1 if and only if 2/AB = 1/AC + 1/AD.
Suppose (4B,CD) = —1. Then AC/CB = — AD|DB, whence
CB/(AB- AC) = BD/(AB - AD),

or
(AB — AC)[(AB- AC) = (AD — AB)/(AB - AD).
That is,
1JAC — 1/AB = 1/AB — 1/AD,
or

2/AB =1/AC + 1/AD.

The converse may be established by reversing the above steps.
2.8.5 THEOREM. (AB,CD)= —1 if and only if OB? = OC - OD, where O
is the midpoint of AB.

Suppose (4B,CD) = —1. Then AC/CB = — AD/DB, whence

(OC — 04)/(0B - 0C) = —(0D — 04)/(OB - OD),

or, since OA = —OB,

(OC + OB)/(OB — OC) = (OD + OB)/(OD — OB).
It now follows that

(OC + OB)(OD — OB) = (OD + OB)(OB — OC),
or, upon multiplying out and simplifying,

OB>=0C- OD.
The converse may be established by reversing the above steps.

We now look at the connection between ‘“harmonic division” and
“ harmonic progression.”

2.8 Harmonic Division
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2.8.6 DeErINITION. The sequence of numbers {a,, a,, ..., a,} is said to
be a harmonic progression if the sequence of numbers {1/a,, 1/a,, ..., 1/a,}
is an arithmetic progression.

2.8.7 THEOREM. The sequence of numbers {a,, a,, as} is a harmonic
progression if and only if 2/a, = 1/a; + 1/a5.

The proof follows readily from Definition 2.8.6.

2.8.8 THEOREM. If (AB,CD) = —1, then {AC, AB, AD} is a harmonic
progression.

This is a consequence of Theorems 2.8.4 and 2.8.7.

We conclude this section with a brief consideration of complete quadri-
laterals and complete quadrangles, and their useful harmonic properties.

2.8.9 DEFINITIONS. A complete quadrilateral (see Figure 2.8a) is the figure

Figure 2.8a

formed by four coplanar lines no three of which are concurrent. The four
lines are called the sides of the complete quadrilateral, and the six points of
intersection of pairs of the sides are called the vertices of the complete
quadrilateral. Pairs of vertices not lying on any common side are called
opposite vertices of the complete quadrilateral. The lines through the three
pairs of opposite vertices are called the diagonal lines of the complete quadri-
lateral, and the triangle determined by the three diagonal lines is called the
diagonal 3-line of the complete quadrilateral.

A complete quadrangle (see Figure 2.8b) is the figure formed by four
coplanar points no three of which are collinear. The four points are called
the vertices of the complete quadrangle, and the six lines determined by
pairs of the vertices are called the sides of the complete quadrangle. Pairs
of sides not passing through any common vertex are called opposite sides
of the complete quadrangle. The points of intersection of the three pairs
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Figure 2.8b

of opposite sides are called the diagonal points of the complete quadrangle,
and the triangle determined by the three diagonal points is called the diagonal
3-point of the complete quadrangle.

2.8.10 THEOREM. On each diagonal line of a complete quadrilateral there
is a harmonic range consisting of the two vertices of the quadrilateral and the
two vertices of the diagonal 3-line lying on it.

Let us show (see Figure 2.8a) that (UV,TS) = —1. We have
(UV,T1S) = P(UV,TS) = P(AB,RS) = (AB,RS).

But, by Theorem 2.4.1, (AB,RS)= —1. We may now easily show that
(PU,AC) = (PV,DB) = (UV,TS) = —1.

2.8.11 THEOREM. At each diagonal point of a complete quadrangle there is
a harmonic pencil consisting of the two sides of the quadrangle and the two
sides of the diagonal 3-point passing through it.

This follows immediately from Theorem 2.4.1.

PROBLEMS

1. Justify each of the following methods of constructing the harmonic conjugate
D of a given point C with respect to a given segment AB.
(a) Take any point P not on line 4B and connect P to 4, B, C. Through B
draw the parallel to AP, cutting line PC in M, and on this parallel mark off
BN = MB. Then PN cuts line AB in the sought point D.
(b) Draw the circle on AB as diameter. If C lies between 4 and B, draw CT
perpendicular to AB to cut the circle in 7. Then the tangent to the circle at T
cuts line AB in the sought point D. If C is not between 4 and B, draw one of
the tangents CT to the circle, T being the point of contact of the tangent.
Then the sought point D is the foot of the perpendicular dropped from 7 on AB.
(c) Connect any point P not on line AB with 4, B, C. Through A4 draw any
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10.

11.

12.

13.

14.

line (other than AB or AP) to cut PC and PB in M and N respectively. Draw
BM to cut PA in G. Now draw GN to cut line AB in the sought point D. (Note
that this construction uses only a straightedge.)

. If (AB,CD) = —1 and O and O’ are the midpoints of 4B and CD respectively,

show that (OB)? + (O’C)?> = (00")>.

. (a) Show that the lines joining any point on a circle to the vertices of an in-

scribed square form a harmonic pencil.

(b) Show, more generally, that the lines joining any point on a circle to the
extremities of a given diameter and to the extremities of a given chord per-
pendicular to the diameter form a harmonic pencil.

(c) Triangle ABC is inscribed in a circle of which DE is the diameter per-
pendicular to side AC. If lines DB and EB intersect AC in L and M, show that
(AC,LM) = —1.

(d) Show that the diameter of a circle perpendicular to one of the sides of an
inscribed triangle is divided harmonically by the other two sides.

. (@) If L, M, N are the midpoints of the sides BC, CA, AB of a triangle ABC,

show that L(MN,AB) = —1.

(b) If P, Q, R are the feet of the altitudes on sides BC, CA, AB of a triangle
ABC, show that P(QR,AB) = —1.

(c) The bisector of angle A4 of triangle ABC intersects the opposite side in T.
U and V are the feet of the perpendiculars from B and C upon line AT. Show
that (AT, UV) = —1.

. Let BC be a diameter of a given circle, let 4 be a point on BC produced, and

let P and Q be the points of contact of the tangent to the circle from point A4.
Show that P(4Q,CB) = —1.

. If P(AB,CD) = —1 and if PC is perpendicular to PD, show that PC and PD

are the bisectors of angle APB.

. If O is any point on the altitude AP of triangle ABC, and BO and CO intersect

AC and AB in E and F respectively, show that PA bisects angle EPF.

. Given four collinear points 4, B, C, D, find points P and Q such that (4B,PQ)

= (CD,PQ) = —1.

. In triangle ABC we have (BC,PP’) = (CA,QQ’) = (AB,RR’) = —1. Show

that AP’, BQ’, CR’ are concurrent if and only if P, Q, R are collinear.
Prove, in Figure 2.8a, that

TA-TC:-SB:-SD = SA-SC-TB- TD.

If (AB,CD) = —1 and O is the midpoint of CD, show that AC-AD =
AB- AO.

If P, P’ divide one diameter of a circle harmonically and Q, Q' divide another
diameter harmonically, prove that P, Q, P’, Q’ are concyclic.

Two circles intersect in points 4 and B. A common tangent touches the circles
at P and Q and cuts a third circle through 4 and B in L and M. Prove that
(PQ,LM) = —1.

A circle Z inscribed in a semicircle touches the diameter 4B of the semicircle at
a point C. Prove that the diameter of X is the harmonic mean between AC
and CB.
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15. In Figure 2.8a, prove that UD, VA, PS are concurrent.

16. If (AB,CD) = —1 4nd O is the midpoint of AB, prove that OC/OD =
(AC)*/(AD)>.

17. In Figure 2.8a, prove that the midpoints X, Y, Z of DB, AC, ST are collinear.

18. A secant from an external point A4 cuts a circle in C and D, and cuts the chord
of contact of the tangents to the circle from 4 in B. Prove that (4B,CD) = —1.

19. If A4, B, C are collinear, P the harmonic conjugate of 4 with respect to B and
C, Q the harmonic conjugate of B with respect to C and 4, and R the harmonic
conjugate of C with respect to 4 and B, show that A4 is the harmonic conjugate
of P with respect to Q and R.

20. If P’, Q' are the harmonic conjugates of P and Q with respect to 4 and B,
show that the segments PQ, P’'Q’ subtend equal or supplementary angles at
any point on the circle described on AB as diameter.

21. Prove that the geometric mean of two positive numbers is the geometric mean
of the arithmetic mean and harmonic mean of the two numbers.

22. If (AB,PQ) = —1 and O is collinear with 4, B, P, Q, show that 2(573/,@)
= OP/AP + 0Q/AQ.

23. In triangle ABC, D and D’, E and E’, F and F’ are harmonic conjugates with
respect to B and C, C and A4, A and B respectively. Prove that corresponding
sides of triangles DEF, D’E’F’ intersect on the sides of triangle ABC.

24. Through a given point O a variable line is drawn cutting two fixed lines in P
and Q, and on OPQ point X is taken such that 1/0X = 1/OP + 1/0Q. Find
the locus of X.

25. Through a given point O a variable line is drawn cutting » fixed lines in P;,
P,,..., P,, and on the variable line a point X is taken such that 1/0X =
1/OP, + 1/OP, + -+ + 1/OP,. Find the locus of X.

2.9 ORTHOGONAL CIRCLES

For later purposes we shall need certain parts of the elementary geometry
of circles that did not make their appearance until the nineteenth century.
The material we are concerned about is that centered around the concepts
of orthogonal circles, the power of a point with respect to a circle, the
radical axis of a pair of circles, the radical center and radical circle of a
trio of circles, and coaxial pencils of circles. Though one can see the notion
of power of a point with respect to a circle foreshadowed in Propositions
35 and 36 of Book III of Euclid’s Elements, the concept was first crystallized
and developed by Louis Gaultier in a paper published in 1813 in the Journal
de I’Ecole Polytechnique. Here we find, for the first time, the terms radical
axis and radical center; the term power was introduced somewhat later by
Jacob Steiner. The initial studies of orthogonal circles and coaxial pencils
of circles were made in the early nineteenth century by Gaultier, Poncelet,
Steiner, J. B. Durrende, and others. This rather recent elementary geometry
of the circle has found valuable application in various parts of mathematics
and physics.
We start with a definition of orthogonal curves.

2.9 Orthogonal Circles
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2.9.1 DerFINITIONS. By the angles of intersection of two coplanar curves
at a point which they have in common is meant the angles between the
tangents to the curves at the common point. If the angles of intersection
are right angles, the two curves are said to be orthogonal.

The facts stated about circles in the following theorem are quite obvious.

2.9.2 THEOREM. (1) The angles of intersection at one of the common points
of two intersecting circles are equal to those at the other common point. (2) If
two circles are orthogonal, a radius of either, drawn to a point of intersection,
is tangent to the other; conversely, if the radius of one of two intersecting
circles, drawn to a point of intersection, is tangent to the other, the circles
are orthogonal. (3) Two circles are orthogonal if and only if the square of the
distance between their centers is equal to the sum of the squares of their radii.
(4) If two circles are orthogonal, the center of each lies outside the other.

We now establish a few deeper facts about orthogonal circles that will
be useful to us in a later chapter.

2.9.3 THEOREM. If two circles are orthogonal, then any diameter of one
which intersects the other is cut harmonically by the other; conversely, if a
diameter of one circle is cut harmonically by a second circle, then the two
circles are orthogonal.

Let O (see Figure 2.9a) be the center of one of a pair of orthogonal circles

Figure 2.9a

and let a diameter AOB of this circle cut the other in points C and D. Let
T be a point of intersection of the two circles. Then (OB)* = (OT)* =
(OC)(OD), since (by Theorem 2.9.2 (2)) OT is tangent to the second circle.
It now follows (by Theorem 2.8.5) that (4B,CD) = —1.

Conversely, if (4B,CD) = —1, then (by Theorem 2.8.5) (OT)* = (OB)* =
(OC)(OD), and OT is tangent to the second circle, whence (by Theorem
2.9.2 (2)) the two circles are orthogonal.

2.9.4 DEFINITION AND CONVENTION. We shall call a circle or a straight
line a “circle” (with quotation marks), and we shall adopt the convention
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that two straight lines are tangent if and only if they either coincide or are
parallel. With this convention, it is perfectly clear in all cases what is meant
by two “circles” being tangent to one another. Some authors refer to a
“circle” as a stircle.

2.9.5 THEOREM. There is one and only one “ circle’ orthogonal to a given
circle T and passing through two given interior points A and B of X.

Let O (see Figure 2.9b) be the center of X. If 4, O, B are collinear, the

Figure 2.9b

diameter AOB is a straight line through 4 and B and orthogonal to X. If
A, O, B are not collinear, let A’ be the harmonic conjugate of 4 with respect
to the endpoints of the diameter of X passing through 4. Then the circle
BAA’ passes through A4 and B and (by Theorem 2.9.3) is orthogonal to X.
Thus in any event, there is at least one “circle”” through the points 4 and B
and orthogonal to X. To show that there is only one such “circle,” let IT
represent any “circle” through A and B and orthogonal to X. If IT is a
straight line then it must be a diameter of X. That is, 4, O, B are collinear
and IT coincides with the straight line considered earlier. If IT is a circle,
then (by Theorem 2.9.3) it must also pass through the point A’, and thus
coincide with the circle BAA' considered earlier. This proves the theorem.

2.9.6 THEOREM. There is a unique “ circle’ orthogonal to a given circle
and tangent to a given line 1 at an ordinary point A of | not on X.

Let O (see Figure 2.9¢c) be the center of X. It is easy to show that if O lies
on [, then / is the unique “circle” satisfying the given conditions. If O does
not lie on /, it is easy to show that the circle passing through 4 and having
its center at the point of intersection of the perpendicular to / at 4 and the
perpendicular bisector of AA’, where A’ is the harmonic conjugate of A
with respect to the endpoints of the diameter of X through A, is the unique
“circle” satisfying the given conditions.

As mentioned earlier, Propositions IIT 35 and III 36 of Euclid’s Elements
contain the germs of the notion of power of a point with respect to a circle.
With the aid of sensed magnitudes, these two propositions can be combined
into the following single statement.
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Figure 2.9¢

2.9.7 THeoReM. If P is a fixed point in the plane of a given circle T, and
if a variable line 1 through P intersects T in points A and B, then the product
PA - PB is independent of the position of 1.

Let O be the center of X. If P coincides with O, or lies on X, or is an
ideal point, the theorem is obvious. Otherwise (see Figures 2.9d, and 2.9d,),

A

Figure 2.9d, Figure 2.9d,

draw the diameter MN through the point P and connect 4 with M and B
with N. The two triangles PMA and PBN are equiangular, and therefore
similar, whence

PA/PM = PN/PB or PA-PB=PM- PN,
and the theorem follows since the right-hand side of the last equality is

independent of the position of /.

The preceding theorem justifies the following definition.

2.9.8 DEerINITION. The power of a point with respect to a circle is the
product of the signed distances of the point from any two points on the
circle and collinear with it.

It follows that the power of a point with respect to a circle is positive,
zero, or negative according as the point lies outside, on, or inside the circle.
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If the point lies outside the circle, its power with respect to the circle is
equal to the square of the tangent from the point to the circle; if the point
lies inside the circle, its power with respect to the circle is the negative of
the square of half the chord perpendicular to the diameter passing through
the given point. We thus have:

2.9.9 THEOREM. Let P be a point in the plane of a circle X of center O
and radius r. Then the power of P with respect to X is equal to (OP)* — r?.

We leave it to the reader to show that Theorem 2.9.3 can be rephrased
as follows:

2.9.10 THEOREM. A necessary and sufficient condition for two circles to
be orthogonal is that the power of the center of either with respect to the other
be equal to the square of the corresponding radius.

PROBLEMS

1. Establish Theorem 2.9.2.

2. Establish Theorem 2.9.10.

3. Show that if d is the distance between the centers of two intersecting circles,
c is the length of their common chord, r and r’ their radii, then the circles are
orthogonal if and only if cd = 2rr’.

4. If a line drawn through a point of intersection of two circles meets the circles
again in P and Q respectively, show that the circles with centers P and Q,
each orthogonal to the other circle, are orthogonal to each other.

5. If AB is a diameter of a circle and if any two lines AC and BC meet the circle
again at P and Q respectively, show that circle CPQ is orthogonal to the given
circle.

6. Two orthogonal circles intersect in points P and Q. If C is a point on one of
the circles, and if CP and CQ cut the other circle in 4 and B, prove that AB
is a diameter of this other circle.

7. Let H be the orthocenter of a triangle ABC. Show that the circles on AH and
BC as diameters are orthogonal.

8. If the quadrilateral whose vertices are the centers and the points of intersection
of two circles is cyclic, prove that the circles are orthogonal.

9. If ABis a diameter and M any point of a circle of center O, show that the two
circles AMO and BMO are orthogonal.

10. Let ABC be a triangle having altitudes AD, BE, CF and orthocenter H. Circles
are drawn having A4, B, C for centers and (4H)(AD), (BH)(BE), (CH)(CF)
for the squares of their respective radii. Prove that each circle is orthogonal
to the other two.

2.9 Orthogonal Circles
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210 THE RADICAL AXIS OF A PAIR OF CIRCLES

In this section we continue our study of some of the modern elementary
geometry of the circle by considering the locus of a point that has equal
powers with respect to two given circles. This leads to the important concept
of a coaxial pencil of circles.

2.10.1 DerNiTION. The locus of a point whose powers with respect to
two given circles are equal is called the radical axis of the two given circles.

2.10.2 THEOREM. The radical axis of two nonconcentric circles is a straight
line perpendicular to the line of centers of the two circles.

Consider two nonconcentric circles with centers O and O’ and radii r
and r’ (see Figure 2.10a), and let P be any point on the radical axis of the

Figure 2.10a

two circles. Let Q be the foot of the perpendicular from P on OO’. Then
(by Theorem 2.9.9)

(PO)? — r* = (PO")* — r'2.
Subtracting (PQ)? from each side we get
(0Q)* —r? =(QO')* —r'?,

or
(00 + QO')(00 — QO') =r* —r'?,

whence

0)) 00 - Q0' = (r* - r'»/00'.

Now there is only one point Q on OO’ satisfying relation (1). For if R is
any such point we have
0Q — Q0' = OR — RO/,
or
(OR + RQ) — QO' = OR — (RQ + Q0),
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or
OR - OR — 00’ = OR + OR — 00,

and QR =0, or R coincides with Q. It follows that if a point is on the

radical axis of the two circles it lies on the perpendicular to the line of

centers at the point Q. Conversely, by reversing the above steps, it can be

shown that any point on the perpendicular to OO’ at Q lies on the radical

axis of the two circles. Therefore the radical axis of the two circles is the
perpendicular to OO’ at the point Q.

2.10.3 ReMark. If, in equation (1) of the proof of Theorem 2.10.2,
r' #r and O’ approaches O, Q approaches an ideal point. The radical axis
of two unequal concentric circles is therefore frequently defined to be the
line at infinity in the plane of the circles. The radical axis of two equal con-
centric circles is left undefined, and it is to be understood that any statement
about radical axes is not intended to include this situation.

2.10.4 THEOREM. The radical axes of three circles with noncollinear
centers, taken in pairs, are concurrent.

Let P be the intersection of the radical axis of the first and second circles
with that of the second and third circles. Then P has equal powers with
respect to all three circles, and thus must also lie on the radical axis of the
first and third circles.

2.10.5 DEerINITION. The point of concurrence of the radical axes of three
circles with noncollinear centers, taken in pairs, is called the radical center
of the three circles.

2.10.6 THEOREM. (1) The center of a circle which cuts each of two circles
orthogonally lies on the radical axis of the two circles. (2) If a circle whose
center lies on the radical axis of two circles is orthogonal to one of them, it
is also orthogonal to the other.

This is an immediate consequence of Theorem 2.9.10.

Figure 2.10b, T
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2.10.7 THeOREM. (1) All the circles which cut each of two given noninter-
secting circles orthogonally intersect the line of centers of the two given circles
in the same two points. (2) A circle which cuts each of two given intersecting
circles orthogonally does not intersect the line of centers of the two given circles.

(1) Let a circle with center P cut two given circles with centers O and O’
orthogonally. Then (by Theorem 2.10.6) P lies on the radical axis of the
two given circles. Referring to Figure 2.10b,, we then have OQ > OT,
whence PT > PQ, and the common orthogonal circle intersects OO’ in
points L and L'. Now

(PL)* = (LQ)* + (QP)*
and also
(PL)* = (PT)* = (PO)* - (OT)* = (0Q)* + (@P)* — (OT)’,
whence
(LQ)* = (0Q)* — (OT)*.

This last equation shows that the position of L is independent of that of P.
Hence every circle orthogonal to the two given circles passes through point
L. Similarly, every such circle passes through L'.

Figure 2.10b, T '.
\L

d/ o

(2) Referring to Figure 2.10b, we have OQ < OT, whence PT < PQ, and
the common orthogonal circle fails to intersect OO’.

2.10.8 DEerINITIONS. A set of circles is said to form a coaxial pencil if
the same straight line is the radical axis of any two circles of the set; the
straight line is called the radical axis of the coaxial pencil.

Coaxial pencils of circles are very useful in certain mathematical and
physical investigations. We leave to the reader the easy task of establishing

the two following important theorems about such sets of circles.

2.10.9 THEOREM. (1) The centers of the circles of a coaxial pencil are
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collinear. (2) If two circles of a coaxial pencil intersect, every circle of the
pencil passes through the same two points; if two circles of a coaxial pencil are
tangent at a point, all circles of the pencil are tangent to one another at the same
point; if two circles of a coaxial pencil do not intersect, no two circles of the
pencil intersect. (3) The radical axis of a coaxial pencil of circles is the locus
of a point whose powers with respect to all the circles of the pencil are equal.

2.10.10 DeFiNITION. By Theorem 2.10.9 (2) there are three types of co-
axial pencils of circles, and these are called an intersecting coaxial pencil,
a tangent coaxial pencil, and a nonintersecting coaxial pencil.

2.10.11 TueoreM. (1) All the circles orthogonal to two given nonintersecting
circles belong to an intersecting coaxial pencil whose line of centers is the
radical axis of the two given circles. (2) All the circles orthogonal to two given
tangent circles belong to a tangent coaxial pencil whose line of centers is the
common tangent to the two given circles. (3) All the circles orthogonal to two
given intersecting circles belong to a nonintersecting coaxial pencil whose line
of centers is the line of the common chord of the two given circles.

We close the section with a particularly pretty application of some of
the foregoing theory to the complete quadrilateral.

2.10.12 THEOREM. The three circles on the diagonals of a complete quadri-
lateral as diameters are coaxial; the orthocenters of the four triangles deter-
mined by the four sides of the quadrilateral taken three at a time are collinear,
the midpoints of the three diagonals are collinear on a line perpendicular to
the line of collinearity of the four orthocenters.

Referring to Figure 2.10c, let 4, B, C, D, E, F be the six vertices of a

Figure 2.10c
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complete quadrilateral, H the orthocenter of triangle ABC, and A4’, B, C’
the feet of the altitudes of triangle ABC. Since 4, C, C’, A’ and B’, C, C', B
are sets of concyclic points,

(HA)(HA') = (HB)(HB') = (HC)(HC)).
But 44’, BB’ CC’ are chords of the circles having the diagonals AF, BE, CD
of the complete quadrilateral as diameters. If follows that H has the same
power with respect to all three of these circles. Similarly it can be shown
that the orthocenters of triangles ADE, BDF, CEF each have equal powers
with respect to the three circles. It follows that the three circles are coaxial,
the four orthocenters are collinear on their radical axis, and the centers of

the circles (that is, the midpoints of the three diagonals) are collinear on a
line perpendicular to the line of collinearity of the four orthocenters.

PROBLEMS

1. Show that if the radical center of three circles with noncollinear centers is
exterior to each of the three circles, it is the center of a circle orthogonal to all
three circles. (This circle is called the radical circle of the three circles.)

2. Establish Theorem 2.10.9.
3. Establish Theorem 2.10.11.

4. Prove that the radical axis of two circles having a common tangent bisects the
segment on the common tangent determined by the points of contact.

5. Justify the following construction of the radical axis of two nonconcentric
nonintersecting circles. Draw any circle cutting the given circles in 4, A’
and B, B’ respectively. Through P, the intersection of A4’ and BB’, draw the
perpendicular to the line of centers of the given circles. This perpendicular is
the required radical axis.

6. (a) Prove that the radical center of the three circles constructed on the sides
of a triangle as diameters is the orthocenter of the triangle.
(b) Let AD, BE, CF be cevian lines of triangle ABC. Prove that the radical
center of circles constructed on AD, BE, CF as diameters is the orthocenter
of the triangle.

7. If the common chord of two intersecting circles C, and C, is a diameter of
C,, circle C, is said to be bisected by circle C,, and circle C, is said to bisect
circle C,. Prove the following theorems concerning bisected circles.

(a) If circle C; is bisected by circle C,, the square of the radius of C, is equal
to the negative of the power of the center of C, with respect to C,.

(b) If point P lies inside a circle C;, then P is the center of a circle C, which
is bisected by C;.

(c) If the radical center of three circles with noncollinear centers lies inside
the three circles, then it is the center of a circle which is bisected by each of the
three circles.

(d) The locus of the center of a circle which bisects two given nonconcentric
circles is a straight line parallel to the radical axis of the two given circles. (This
line is called the antiradical axis of the two given circles.)
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(e) The circles having their centers on a fixed line and bisecting a given circle
form a coaxial pencil of circles.

8. Prove that if each of a pair of circles cuts each of a second pair orthogonally,
then the radical axis of either pair is the line of centers of the other.

9. (a) Through a given point draw a circle that is orthogonal to two given circles.
(b) Through a given point draw a circle that is coaxial with two given circles.

10. Construct a circle such that tangents to it from three given points shall have
given lengths.

11. Prove Casey’s Power Theorem: The difference of the powers of a point with
respect to two circles is equal to twice the product of the distance of the point
from the radical axis and the distance between the centers of the circles.

12. (a) What is the locus of a point whose power with respect to a given circle
is constant?
(b) What is the locus of a point the sum of whose powers with respect to two
circles is constant?
(c) What is the locus of a point the difference of whose powers with respect to
two circles is constant?
(d) What is the locus of a point the ratio of whose powers with respect to two
circles is constant?

13. (a) Prove that if a circle has its center on the radical axis of a coaxial pencil
of circles and is orthogonal to one of the circles of the pencil, it is orthogonal
to all the circles of the pencil.

(b) Prove that if a circle is orthogonal to two circles of a coaxial pencil of
circles, it is orthogonal to all the circles of the pencil.

14. Show that the radical axes of the circles of a coaxial pencil with a circle not
belonging to the pencil are concurrent.

15. Given three lines, and on each a pair of points such that a circle passes through
each two pairs, show that either the three lines are concurrent or the six points
lie on one circle.
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Transformations

3.1 Transformation Theory - 3.2 Fundamental

Point Transformations of the Plane - 3.3 Applications
of the Homothety Transformation - 3.4 /sometries
3.5 Similarities - 3.6 Inversion - 3.7 Properties of
Inversion - 3.8 Applications of Inversion

3.9 Reciprocation - 3.10 Applications of
Reciprocation - 3.11 Space Transformations

One of the most useful methods exploited by geometers of the modern era
is that of cleverly transforming a figure into another which is better suited
to a geometrical investigation. The gist of the idea is this. We wish to solve
a difficult problem connected with a given figure. We transform the given
figure into another which is related to it in a definite way and such that
under the transformation the difficult problem concerning the original figure
becomes a simpler problem concerning the new figure. We solve the simpler
problem related to the new figure, and then invert the transformation to
obtain the solution of the more difficult problem related to the original
figure.

The idea of solving a difficult problem by means of an appropriate trans-
formation is not peculiar to geometry but is found throughout mathematics.*
For example, if one were asked to find the Roman numeral representing
the product of the two given Roman numerals LXIII and XXIV, one would
transform the two given Roman numerals into the corresponding Hindu-
Arabic numerals, 63 and 24, solve the related problem in the Hindu-Arabic
notation by means of the familiar multiplication algorithm to obtain the
product 1512, then invert this result back into Roman notation, finally

* See M. S. Klamkin and D. J. Newman, ‘The philosophy and applications of transform
theory,” SIAM Review, vol. 3, no. 1, Jan. 1961, pp. 10-36.

99



obtaining MDXII as the answer to the original problem. By an appropriate
transformation, a difficult problem has been converted into an easy problem.
Again, suppose we wish to show that the equation

xT —2x°4+10x*—=1=0

has no root greater than 1. By the substitution x = y + 1 we transform the
given equation into

YT+ Ty +19y° +25p* + 153 + 112 + 17y + 8 = 0.

Since the roots of this new equation are equal to the roots of the original
equation diminished by 1 (y = x — 1), we must show that the new equation
has no root greater than 0. We solve this problem simply by noting that all
the coefficients in the new equation are positive, whence y cannot also be
positive and yet yield a zero sum. Now if we invert the transformation we
obtain the desired result.

Geometrical transformations, as indeed transformations in other areas of
mathematics, are useful not only in solving problems, but also in discovering
new facts. We transform a given figure into a new figure; by studying the
new figure we discover some property in it; then we invert to obtain a prop-
erty of the original figure. In this chapter we shall examine some elementary
geometrical transformations that can frequently be used to simplify the
solution of geometrical problems or to discover new geometrical facts.
Applications of the transform-solve-invert and transform-discover-invert pro-
cedures will appear both in this chapter and, along with further transforma-
tions, in other parts of the book.

In a later chapter we shall look more deeply into the idea of geometrical
transformation, for besides serving as a tool for solution and discovery, the
concept leads to a great unifying and codifying principle in geometry.

3.1 TRANSFORMATION THEORY

As an illustration of the principal concept to be introduced in this section,
consider the set B of all books in some specific library and the set P of all
positive integers. Let us associate with each book of the library the number
of pages in the book. In this way we make correspond to each element of
set B a unique element of set P, and we say that ““ the set B has been mapped
into the set P.”” As another illustration, let N be the set of all names listed
in some given telephone directory and let 4 be the set of twenty-six letters
of the alphabet. Let us associate with each name in the directory the last
letter of the surname, thus making correspond to each element of set N a
unique element of set 4. This correspondence defines ““a mapping of set N
into set 4.” These are examples of the following formal definition.

3.1.1 DEFINITIONS AND NOTATION. If 4 and B are two (not necessarily
distinct) sets, then a mapping of set A into set B is a correspondence that
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associates with each element a of A a unique element b of B. We write
a— b, and call b the image (or map) of a under the mapping, and we say
that element a has been carried into (or mapped into) element b by the map-
ping. If every element of B is the image of some element of A4, then we say
that set A has been mapped onto set B.

Thus if A4 is the set {1,2,3,4} and B the set {a,b,c}, the associations

1-a,2-b,35b,4>a

define a mapping of set A into set B. This, however, is not a mapping of
set A onto set B, since element ¢ of B is not the image under the mapping
of any element of set 4. On the other hand, the mapping induced by the
associations

1-5a,2-b,3-b,4->¢

is a mapping of set 4 onto set B, for now every element of B is the unique
image of some element of A.

A very important kind of mapping of a set 4 onto a set B is one in which
distinct elements of set 4 have distinct images in set B. We assign a special
name to such mappings.

3.1.2 DEFINITION. A mapping of a set A onto a set B in which distinct
elements of A have distinct images in B is called a transformation (or one-to-
one mapping) of A onto B.

3.1.3 DEFINITIONS AND NOTATION. If, in Definition 3.1.2, A and B are
the same set, then the mapping is a transformation of a set 4 onto itself.
In this case there may be an element of A4 which corresponds to itself. Such
an element is called an invariant element (or double element) of the trans-
formation. A transformation of a set 4 onto itself in which every element
is an invariant element is called the identity transformation on A, and will,
when no ambiguity is involved, be denoted by 1.

3.1.4 DEFINITION AND NOTATION. It is clear that a transformation of set
A onto set B defines a second transformation, of set B onto set A, wherein
an element of B is carried into the element of A of which it was the image
under the first transformation. This second transformation is called the
inverse of the first transformation. If T represents a transformation of a set
A onto a set B, then the inverse transformation will be denoted by T™!.

Thus if, among the married couples of a certain city, we let 4 be the set
of husbands and B the set of wives, then the mapping which associates with
each man of set A his wife in set B is a transformation of set 4 onto set B.
The inverse of this transformation is the mapping of B onto A in which each
woman in set B is associated with her husband in set A.

We now introduce the notion of product of two transformations, and
examine some properties of products.

3.1 Transformation Theory
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3.1.5 DEFINITIONS AND NOTATION. Let T, be a transformation of set A
onto set B and T, a transformation of set B onto set C. The performance
of transformation T, followed by transformation 7, induces a transforma-
tion T of set A onto set C, wherein an element a of A is associated with the
element ¢ of C which is the image under T, of the element b of B which is
the image under T of element a of A. Transformation T is called the product,
T,T,, of transformations 7, and T,, taken in this order. If the product
transformation T, T, exists, we say that T, is compatible with T.

Note that in the product T,T;, transformation T, is to be performed
first, then transformation T, . That is, we perform the component transforma-
tions from right to left. This is purely a convention and we could, as some
writers do, have agreed to write the product the other way about. We adopt
the present convention because it better fits into the algebraic treatment of
transformations to be given in a later chapter.

3.1.6 THeoreM. If T, is compatible with T,, it does not follow that T, is
compatible with T,. If, however, both T, and T, are transformations of a
set A onto itself, then necessarily both T, is compatible with T, and T, is
compatible with T, .

The reader can easily construct an example where 7,7, exists but 7,7,
does not exist. The second part of the theorem is quite obvious.

3.1.7 DerNITION. A transformation T of a set 4 onto itself is said to
be involutoric if T2 =TT = L.

3.1.8 THEOREM. A product of two compatible transformations, even if each
is a transformation of a set A onto itself, is not necessarily commutative; that
is, if T, T, and T,T, both exist, we do not necessarily have T,T, =T,T,.

Let A be the set of all points of a plane on which a rectangular coordinate
framework has been superimposed. Let T, be the transformation of 4 onto
itself which carries each point of 4 into a point one unit in the direction
of the positive x axis, and let T, be the transformation of 4 onto itself
which rotates each point of 4 counterclockwise about the origin through
90°. Under T,T, the point (1,0) is carried into the point (0,2), whereas under
T,T, it is carried into the point (1,1). It follows that T, T, # T,T,.

3.1.9 THEOREM. Multiplication of compatible transformations is associative;
that is, if T;, T,, T3 are transformations such that T, is compatible with T,
and T3 with T,, then T3(T,T,) = (T5T,)T,.

For both T,(7T,T,) and (737T,)T, denote the resultant transformation
obtained by first performing 7', then T,, then T5.

We leave to the reader the establishment of the following three theorems.
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3.1.10 THeoreM. If T is a transformation of set A onto itself, then (1)
TI=IT=T,Q TT '=T"'T=1L

3.1.11 THeoreM. If T and S are transformations of a set A onto itself,
and if TS =1, then S =T 1.

3.1.12 THEOREM. If transformation T, is compatible with transformation
Tl’ then (Tle)_l = Tl_ sz_l.

We conclude with a definition which will be basic in a later chapter.

3.1.13 DEerINITIONS. A nonempty set of transformations of a set 4 onto
itself is said to constitute a transformation group if the inverse of every
transformation of the set is in the set and if the product of any two trans-
formations of the set is in the set. If, in addition, the product of every two
transformations of the set is commutative, then the transformation group
is said to be abelian (or commutative).

PROBLEMS

1. If A represents the set of all integers, which of the following mappings of 4
into itself are mappings of A4 onto itself? Which are transformations of 4 onto

itself?

@ a—a+5 (b) a—a+ a?
(©) a—a® da—>2a-1
(e) a—>5—a f) a—a-5

2. If Rrepresents the set of all real numbers, which of the following mappings of R
into itself are mappings of R onto itself? Which are transformations of R onto

itself?

@ r—2r—1 (b) r—r?
© r—r3 @r—1-r
@ r—r+r? ) r—5r

3. If R represents the set of all real numbers, is the mapping indicated by the
association r — r3 — r a mapping of R onto itself? Is it a transformation of
R onto itself?
4. (a) Generalize Definition 3.1.5 for the situation where 7T, is a mapping of set
A into set B and T, is a mapping of set B into set C.
(b) Let T, and T, be the mappings of the set N of natural numbers into itself
indicated by the associations n— n? and n— 2n + 3 respectively. Find the
associations for the mappings 717>, T.T1, T, T2, (T \T>)Ty, T(T.T)).
. Supply a proof for Theorem 3.1.6.
. Establish Theorem 3.1.10.
. Establish Theorem 3.1.11.

. Establish Theorem 3.1.12.

0 9 N W
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9. If T is a transformation of set 4 onto set B, show that (T-!)~! = T.
10. If T is an involutoric transformation, show that T = T,
11. If Ty, T,, T, are transformations of a set 4 onto itself, show that (757, T;) !
= T{iT3 T35
12. DerINITION. If T and S are two transformations of set 4 onto itself, the trans-
formation STS —* is called the transform of T by S.
(a) Show that the transform of the inverse of T by S is the inverse of the
transform of T by S.
(b) If TS = ST, show that each transformation is its own transform by the
other.
(¢ If Ty, T,, S are all transformations of set A onto itself, show that the
product of the transforms of T, and T, by S is the transform of T,T; by S.
13. In abstract algebra a group is defined to be a set G of elements in which a binary
operation * is defined satisfying the following four postulates:
Gl: Foralla,binG,a xbisinG.
G2: Foralla,b,cinG,(a*b) *c=ax*(b=*c).
G3: There exists an element i of G such that, for allain G,a *i = a.
G4: For each element a of G there exists an element a=* of G such that a * a=!
=i
Show that a transformation group is a group in the sense of abstract algebra,
where transformation multiplication plays the role of the binary operation.

3.2 FUNDAMENTAL POINT TRANSFORMATIONS OF
THE PLANE

Let S be the set of all points of an ordinary plane. In this section we consider
some fundamental transformations of the set S onto itself.

3.2.1 DEFINITIONS AND NOTATION. Let 4B be a directed line segment in
the plane. By the translation T(AB) we mean the transformation of S onto
itself which carries each point P of the plane into the point P’ of the plane
such that PP’ is equal and parallel to AB. The directed segment AB is called
the vector of the translation.

3.2.2 DEFINITIONS AND NOTATION. Let O be a fixed point of the plane
and 0 a given sensed angle. By the rotation R(0O,0) we mean the transforma-
tion of S onto itself which carries each point P of the plane into the point
P’ of the plane such that OP’ = OP and ¥ POP’ = 6. Point O is called the
center of the rotation, and 0 is called the angle of the rotation.

3.2.3 DEFINITIONS AND NOTATION. Let / be a fixed line of the plane. By
the reflection R(l) in line | we mean the transformation of .S onto itself which
carries each point P of the plane into the point P’ of the plane such that /
is the perpendicular bisector of PP’. The line [/ is called the axis of the
reflection.
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3.2.4 DEFINITIONS AND NOTATION. Let O be a fixed point of the plane.
By the reflection (or half-turn) R(O) in (about) point O we mean the trans-
formation of S onto itself which carries each point P of the plane into the
point P’ of the plane such that O is the midpoint of PP’. Point O is called
the center of the reflection.

3.2.5 DEFINITIONS AND NOTATION. Let O be a fixed point of the plane
and k a given nonzero real number. By the homothety (or expansion, or
dilatation, or stretch) H(O,k) we mean the transformation of S onto itself
which carries each point P of the plane into the point P’ of the plane such
that OP’ = k OP. The point O is called the center of the homothety, and
k is called the ratio of the homothety.

There are certain products of the above transformations which also are
of fundamental importance.

3.2.6 DEFINITIONS AND NOTATION. Let / be a fixed line of the plane and
AB a given directed segment on /. By the glide-reflection G(I,AB) we mean
the product R(/)T(AB). The line / is called the axis of the glide-reflection,
and the directed segment AB on [ is called the vector of the glide-reflection.

3.2.7 DEFINITIONS AND NOTATION. Let / be a fixed line of the plane and
O a fixed point on /, and let k be a given nonzero real number. By the stretch-
reflection S(O,k,l) we mean the product R(/)H(O,k). The line / is called the
axis of the stretch-reflection, the point O is called the center of the stretch-
reflection, and k is called the ratio of the stretch-reflection.

3.2.8 DEFINITIONS AND NOTATION. Let O be a fixed point of the plane,
k a given nonzero real number, and 6 a given sensed angle. By the homology
(or stretch-rotation, or spiral rotation) H(O,k,0) we mean the product
R(0,0)H(O,k). Point O is called the center of the homology, k the ratio of
the homology, and 0 the angle of the homology.

The following theorems are easy consequences of the above definitions.

3.2.9 THEOREM. If n is an integer, then R(O,(2n + 1)180°) = R(O) =
H(O, — 1).

3.2.10 THEOREM. If n is an integer, then (1) H(O,k,n360°) = H(O,k),
(2) H(O,k,(2n + 1)180° H) =(O, — k).

3.211 Tueorem. T(BC)T(AB) = T(AB)T(BC) = T(AC).

3.2.12 TueoreM. R(0O,0,)R(0O,0,) = R(0,0,)R(0,8,) = R(0,6, + 6,).
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3.2.13 TueoreM. R(O,6)H(O,k) = H(O,k)R(0,0) = H(O,k,0).
3.2.14 THEOREM. If AB is on 1, then R()T(AB) = T(AB)R(l) = G(1,AB).
3.2.15 THEOREM. If O is onl, then R()H(O,k) = H(O,K)R(l) = S(O,k,)).

3.2.16 TueoreM. (1) [T(AB)]"! = T(BA), (2) [R(O,0)] ! = R(O, —6),
3) RMI™* =R, @ [RO)]'=R(0), (5) [HOK] ' =H(O,J/K), (6
[G(L,AB)]~! = G(I,BA), (7) [H(O,k,0)]"* = H(O,l/k, — 6).

3.2.17 THeoreM. (1) T(AA)=1, (2) R(O,n360°) =1, where n is any
integer, (3) H(O,l) = L.

3.2.18 THEOREM. R(l) and R(O) are involutoric transformations.

3.2.19 THEOREM. In the unextended plane (1) a translation of nonzero
vector has no invariant points, (2) a rotation of an angle which is not a multiple
of 360° has only its center as an invariant point, (3) a reflection in a line has
only the points of its axis as invariant points, (4) a reflection in a point has
only its center as an invariant point, (5) a homothety of ratio different from 1
has only its center as an invariant point.

PROBLEMS

1. Let O, P, M, N, referred to a rectangular cartesian coordinate system, be the
points (0,0), (1,1), (1,0), (2,0) respectively, and let / denote the x axis. Find the
coordinates of the point P’ obtained from the point P by the following trans-
formations: (a) T(OM), (b) R(0,90°), (c) R(l), (d) R(M). (e) R(0), (f) H(O,2),
(8) H(N,-2), (h) H(M,}), (i) G(,MN),(5) S(0,2,), (k) H(0,2,90°), (1) H(N,2,45°).

2. (a) If O, # O,, are the rotations R(0,,8,) and R(0,,0,) commutative?

(b) Are R(0O) and R(l) commutative?

(c) Are R(0,0;) and R(0O,,6) commutative?
(d) Are T(AB) and R(I) commutative?

(e) Are T(AB) and R(O) commutative?

3. If AB is carried into A’B’ by a rotation, locate the center of the rotation.
4. Let P map into P’ under a glide-reflection. (a) Show that PP’ is bisected by the

axis of the glide-reflection. (b) Show that the square of the glide-reflection is a
translation of twice the vector of the glide-reflection.

5. Let ABCD be a square with center O. Show that R(B,90°) R(C,90°) = R(0O).

6. Let S be the square whose vertices are A:(1,1), B:(—1,1), C:(—-1,-1),
D: (1,—1), and let O be the origin. (a) Show that S is carried into itself under
each of the transformations: R(x axis), R(y axis), R(AC), R(BD), R(0,90°),
R(0), R(0,270°), I. (b) Show that the transformations of part (a) form a
transformation group.
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10.

11.

12.
13.

14.

. Show that each of the following sets of point transformations in a plane con-

stitutes an abelian trafisformation group: (a) all translations, (b) all concentric
rotations, (c) all concentric homotheties, (d) all concentric homologies.

. Show that R(O;)R(0,) = T(20,0,).
. (a) Show that T(4B)R(O) is a reflection in point O’ such that OO’ is equal and

parallel to (4B)/2. L

(b) Show that R(_O_lT(AB) is a reflection in point O’ such that O’O is equal
and parallel to (4B)/2.

(c) Show that T(OO’)R(O) = R(M), where M is the midpoint of OO".

(a) Show that R(O3)R(O2)R(0:) is a reflection in point O such that OOs
is equal and parallel to 010:.

(b) Show that R(O3)R(0,)R(0,) = R(0{)R(0;)R(03).

Show that R(OO")R(0O) = R(O)R(0O0O’) = R(l), where [ is the line through O
perpendicular to OO’.

Show that if O # O’, then R(O’,— 6)R(0,0) is a translation.

Where is a point P if its image under the homothety H(O,,k,) coincides with
its image under the homothety H(0,,k,), k, # k3?

Let /, and /, be two lines intersecting in a point O and let 8 be the angle from
Iy to I,. Show that G(/,,CD)G(l,,AB) = T(CD)R(0,20)T(AB). In particular,
if 6 = 90°, then G(/,,CD)G(l,,AB) = T(CD)R(O)T(AB).

3.3 APPLICATIONS OF THE HOMOTHETY

TRANSFORMATION

Before continuing our study of geometrical transformations, we pause to
consider a few applications of the homothety transformation.

We first describe a linkage apparatus, known as a pantograph, which was

invented about 1603 by the German astronomer Christolph Scheiner (ca.
1575-1650) for mechanically copying a figure on an enlarged or reduced
scale. The instrument is made in a variety of forms and can be purchased
in a good stationery store. One form is pictured in Figure 3.3a, where the
four equal rods are hinged by adjustable pivots at 4, B, C, P, with OA = AP
and PC = P'C = AB. The instrument lies flat on the drawing paper and is

Figure 3.3a
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fastened to the paper by a pointed pivot at O. Then if pencils are inserted
at P and P’, and P is made to trace a figure F, P’ will trace the figure F’
obtained from F by the homothety H(O,0B/0OA). The reader can easily
justify the working of the machine by showing that A PCB is a parallelogram,
0, P, P’ and collinear, and OP'/OP = OB/OA = constant.

3.3.1 NotATION. By the symbol O(r) we mean the circle with center O
and radius r.

3.3.2 DErINITIONS. Let A(a) and B(b) be two nonconcentric circles and
let 7 and E divide AB internally and externally in the ratio a/b. Then I and
E are called the internal and the external centers of similitude of the two
circles (see Figure 3.3b).

Figure 3.3b A 7 w I

3.3.3 THEOREM. Any two nonconcentric circles A(a) and B(b) with internal
and external centers of similitude 1 and E are homothetic to each other under
the homotheties H(I,—b/a) and H(E,b/a).

Let P (see Figure 3.3c) be any point on A(a) not collinear with 4 and B.

Figure 3.3c

Let P’BP” be the diameter of B(b) parallel to AP, where BP’ has the same
direction as AP. Let P'P cut AB in E’ and P"P cut AB in I'. From similar
triangles we find E'P'/E'P = E'BJE’A = bja. Hence E’ = E, the external
center of similitude, and B(b) is the image of A(a) under the homothety
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H(E,bja). Similarly, I'P"/T'P = I'B/’/A = —b/a, and I' =1, the internal
center of similitude. It follows that B(b) is the image of A(a) under the
homothety H(I, —b/a).

3.3.4 THEOREM. The orthocenter H, the > _circumcenter O, and the centroid
G of a triangle A A, A, are collinear and HG = 2 GO.

Let M,, M,, M, (see Figure 3.3d) be the midpoints of the sides 4, 4;,

Figure 3.3d

4,

A3 A,;, A;A, of the triangle. Since A,G/GM; =2 (i=1, 2, 3), triangle
M M, M, is carried into triangle 4,4, A; by the homothety H(G, —2).
Therefore O, which is the orthocenter of triangle M, M, M, maps into the
orthocenter H of triangle 4,4, A5 . It follows that H, G, O are collinear and
HG =2 GO.

3.3.5 DerINITION. The line of collinearity of the orthocenter, circum-
center, and centroid of a triangle is called the Euler line of the triangle.

3.3.6 THEOREM. In triangle A|A,A; let M,, M,, M, be the midpoints
of the sides A, A;, AsA;, AjA,, H, H,, H; the feet of the altitudes on
these sides, N, N, , N the midpoints of the segments A H, A, H, A; H, where
H is the orthocenter of the triangle. Then the nine points M,, M,, M3, H;, H,,
H;, N;, N,, N; lie on a circle whose center N is the midpoint of the segment
Jjoining the orthocenter H to the circumcenter O of the triangle, and whose radius
is half the circumradius of the triangle.

Referring to Figure 3.3e, we see that XxA,4;H;=90°— x4, =
¥A,A;S, = XA, A3 S,. Therefore right triangle HH,A; is congruent to
right triangle S, H,A4;, and H, is the midpoint of HS,. Similarly, H, is
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Figure 3.3e

the midpoint of HS, and H; is the midpoint of HS;. Draw circumdiameter
A,T,. Then T, A, is parallel to A; H; (since each is perpendicular to 4,4,).
Similarly, T, A4, is parallel to A, H, . Therefore HA,T, A, is a parallelogram
and HT, and A, A, bisect each other. That is, M, is the midpoint of HT),.
Similarly, M, is the midpoint of HT, and M, is the midpoint of HT;. It
now follows that the homothety H(H,}) carries 4, 4,, A5, Sy, S, S3,
T,, T,, Ty into N,, N,, Ny, H,, H,, Hy, M,, M,, M5, whence these
latter nine points lie on a circle of radius half that of the circumcircle and
with center N at the midpoint of HO.

3.3.7 DerNiTION. The circle of Theorem 3.3.6 is called the nine-point
circle of triangle 4,4, A,.

It was O. Terquem who named this circle the nine-point circle, and this
is the name commonly used in the English-speaking countries. Some French
geometers refer to it as Euler’s circle, and German geometers usually call
it Feuerbach’s circle.

3.3.8 DrerFNITION. Let 7 and E be the internal and external centers of
similitude of two given nonconcentric circles 4(a), B(b) having unequal
radii. Then the circle on IE as diameter is called the circle of similitude of
the two given circles.

3.3.9 THEOREM. Let P be any point on the circle of similitude of two
nonconcentric circles A(a), B(b) having unequal radii. Then B(b) is the image
of A(a) under the homology H(P,b/a, < APB).
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Let 7 and E be the internal and external centers of similitude of the two
given circles. If P coincides with I or E the theorem follows from Theorem
3.3.3. If P is distinct from I and E (see Figure 3.3f) then PI is perpendicular

Figure 3.3f

to PE and (AB,IE) = —1. Draw PA’' so that PI bisects ¥ A’ PB internally.
Then PE is the external bisector of the same angle, and it follows that
(A'B,IE) = —1. Therefore A’ = A and PB/PA = IB/AI = b/a. The theorem
now follows.

3.3.10 COROLLARY. The locus of a point P moving in a plane such that
the ratio of its distance from point A to its distance from point B of the plane
is a positive constant k # 1 is the circle on IE as diameter, where 1 and E
divide the segment AB internally and externally in the ratio k.

3.3.11 DernNTION. The circle of Corollary 3.3.10 is called the circle of
Apollonius of points A and B for the ratio k (see Section 1.6).

PROBLEMS

1. In Figure 3.3a show that O, P, P’ are collinear and that OP’/OP = OB/OA.

2. In Figure 3.3g, AE, AB, BF represent three bars jointed at 4 and B. The bars
AE and BF are attached at 4 and B to wheels of the same diameter, and around
which goes a thin flexible steel band C. The result is that if bars AE and BF
are so adjusted as to be parallel, they remain parallel however they are situated
with respect to bar AB. The bars AE and BF are adjustable in length, and pencils
are inserted at points E and F. D is a point adjustable along bar AB and about
which the whole instrument can be rotated. Show that if D is fastened to AB
so as to be collinear with E and F, then the pencil at E describes the map of a
figure traced by the pencil at F under the homothety H(D, — EA/BF).

3. Prove that if two circles have common external tangents, these tangents pass
through the external center of similitude of the two circles, and if they have
common internal tangents, these pass through the internal center of similitude
of the two circles.

4. Let S be a center of similitude of two circles C, and C;, and let one line through
Scut C, in 4 and B and C, in A" and B’, and a second line through S cut C,

3.3 Application of the Homothety Transformation
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Figure 3.3g

in C and D and C, in C’ and D’, where the primed points are the maps of the
corresponding unprimed points under the homothety having center S and
carrying circle C, into circle C,. Show that: (a) B’D’ is parallel to BD,
(b) A’, C’, D, B are concyclic and 4, C, D’, B’ are concyclic, (c) (SA")(SB)
= (SA)(SB’) = (SC’)(SD) = (SC)(SD’), (d) the tangents to C; and C, at
B and A’ intersect on the radical axis of C; and C,.

5. Prove that the circle of similitude of two nonconcentric circles with unequal
radii is the locus of points from which the two circles subtend equal angles.

6. Prove that two circles and their circle of similitude are coaxial.

7. (a) Show that the external centers of similitude of three circles with distinct
centers taken in pairs are collinear.
(b) Show that the external center of similitude of one pair of the circles and the
internal centers of similitude of the other two pairs are collinear.

8. If a circle is tangent to each of two given nonconcentric circles, show that the
line determined by the two points of tangency passes through a center of
similitude of the two given circles.

9. If the distance between the centers of two circles A(a) and B(b) is c, locate the
center of the circle of similitude of the two circles.

10. Show that any circle through the centers of two given nonconcentric circles of
unequal radii is orthogonal to the circle of similitude of the two given circles.

11. In the notation of Theorems 3.3.4 and 3.3.6 show that:

(a) (HG,NO) = —1.
(b) The sum of the powers of the vertices 4;, A,, A3 with respect to the nine-
point circle is (4, A2 + A3 A2 + A;,A42)/4.

12. Prove that the circumcenter of the triangle formed by the tangents to the circum-
circle of a given triangle at the vertices of the given triangle lies on the Euler
line of the given triangle.

13. On the arc M H, of the nine-point circle, take the point X; one-third the
way from M, to H,, Take similar points X, and X3 on arcs M, H, and M3 H,.
Show that triangle XX, X3 is equilateral.
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14. If the Euler line is parallel to the side 4, A5, then tan A4, tan A; = 3, and
tan A,, tan 4, tan A; are in arithmetic progression.

15. Show that the trilinear polar (see Problem 11 Section 2.4) of the orthocenter of
a triangle is perpendicular to the Euler line of the triangle.

3.4 ISOMETRIES

In this section and the next we consider those point transformations of the
unextended plane which preserve all lengths and those which preserve all
shapes. These are known, respectively, as isometries and similarities. We
commence with a formal definition of these concepts.

3.4.1 DEFINITIONS. A point transformation of the unextended plane onto
itself which carries each pair of points 4, B into a pair A, B’ such that
A’'B’ = k(AB), where k is a fixed positive number, is called a similarity (or
an equiform transformation), and the particular case where k =1 is called
an isometry (or a congruent transformation). A similarity is said to be direct
or opposite according as AABC has or has not the same sense as AA'B'C’.
(A direct similarity is sometimes called a similitude, and an opposite simi-
larity an antisimilitude. A direct isometry is sometimes called a displacement,
and an opposite isometry a reversal.)

It is very interesting that isometries and similarities can be factored into
products of certain of the fundamental point transformations considered in
Section 3.2. We proceed to obtain some of these factorizations for the
isometries.

3.4.2 THEOREM. There is a unique isometry that carries a given noncollinear
triad of points A, B, C into a given congruent triad A’, B’, C'.

Superimposing the plane (by sliding, or turning it over and then sliding)
upon its original position so that triangle 4BC coincides with triangle
A’B’'C’ induces an isometry of the plane onto itself in which the point triad
A, B, Cis carried into the point triad 4’, B’, C'. There is only the one isometry,
for if P is any point in the plane there is a unique point P’ in the plane such
that P'’A’ = PA, P'B' = PB, P'C’' = PC.

3.4.3 THEOREM. An isometry can be expressed as the product of at most
three reflections in lines.

Let an isometry carry the triad of points 4, B, C into the congruent triad
A’, B', C'. We consider four cases. (1) If the two triads coincide, the isometry
(by Theorem 3.4.2) is the identity I, which may be considered as the product
of the reflection R(/) with itself, where / is any line in the plane. (2) If 4
coincides with 4’ and B with B’, but C and C’ are distinct, the isometry
(by Theorem 3.4.2) is the reflection R(/), where / is the line AB. (3) If 4
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coincides with A’, but B and B’ and C and C’ are distinct, the reflection
R(l), where [ is the perpendicular bisector of BB’, reduces this case to one
of the two previous cases. (4) Finally, if 4 and 4’, B and B’, C and C’ are
distinct, the reflection R(/), where / is the perpendicular bisector of 44’,
reduces this case to one of the first three cases. In each case, the isometry
is ultimately expressed as a product of no more than three reflections in
lines.*

3.4.4 THEOREM. An isometry with an invariant point can be represented
as the product of at most two reflections in lines.

Let A be an invariant point of the isometry and let B and C be two points
not collinear with 4. Then the point triad 4, B, C is carried into the triad
A’, B’, C’' where A’ coincides with 4. The desired result now follows from
the first three cases in the proof of Theorem 3.4.3.

3.4.5 THEOREM. Let 1, and 1, be any two lines of the plane intersecting
in a point O, and let 0 be the directed angle from 1, to 1,, then R(1,)R(1,) =
R(0,20). Conversely, a rotation R(0,20) can be factored into the product
R(1;)R(l,) of reflections in two lines 1, and 1, through O, where either line may
be arbitrarily chosen through O and then the other such that the directed angle
from 1, to 1, is equal to 0.

The proof is apparent from Figure 3.4a, since OP' = OP and X POP’ =
¥XPOQ + XxQOP' =2 xL,0Q +2 xQOL, =26.

Figure 3.4a

3.4.6 THEOREM. Let 1, and 1, be any two parallel (or coincident) lines of

* One recalls the little test, that made the rounds of the mathematics meetings some years
ago, for ferreting out incipient mathematicians. The test consists of two questions. (1) You
are in a room devoid of all furnishings except for a gas stove in one corner with one burner
lit, and there is a kettle of water on the floor. What would you do to get the water in the
kettle warm? ANswWER: Place the kettle of water on the lighted burner. (2) We have the same
situation as in question (1) except that now there is also a table in the room and the kettle
of water is on the table. What would you do to get the water in the kettle warm? To give the
same answer as before would be fatal. The correct answer is, “ Remove the kettle from the
table and place it on the floor, thus reducing the problem to one that has already been
solved.”
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the plane, and let A A, be the directed distance from line 1, to line 1,, then
R(I,)R(1,) = TQA,A,). Conversely, a translation T(2A,A,) can be factored
into the product R(1,)R(1,) of reflections in two lines 1, and 1, perpendicular
to A,A,, where either line may be arbitrarily chosen perpendicular to A,A,
and then the other such that the directed distance from 1, to 1, is equal to A A, .

The proof is apparent from Figure 3.4b, since PP’ is parallel to 4,4,
and PP’ = PQ + QP =2L,Q + 20L, = 24,4,.

Pl
p

A

2 L, I,
..Q
Figure 3.4b

A Ly h

P

3.4.7 THEOREM. Any direct isometry is either a translation or a rotation.

By Theorem 3.4.3, the isometry is a product of at most three reflections
in lines. Since the isometry is direct, it must be a product of an even number
of such reflections, and therefore of two such reflections. If the axes of the
two reflections are parallel (or coincident), the isometry is a translation (by
Theorem 3.4.6); otherwise the isometry is a rotation (by Theorem 3.4.5).

3.4.8 Lemma. R(O)R(l) = G(m,2MO), where m is the line through O
perpendicular to 1 and cutting 1 in point M.

For, see Figure 3.4c, PN = Q0" + Q"Q’ = 2(MQ" + 0"0) = 2MO and
NQ' =Q'P..

3.4.9 THEOREM. An opposite isometry T is either a reflection in a line or
a glide-reflection.

By Theorem 3.4.4, if T has an invariant point, 7 must be a reflection in
a line. Suppose T has no invariant point and let T carry point A4 into point A’.
Let O be the midpoint of A4’. Then R(O)T is an opposite isometry with
invariant point A. Therefore R(O)T = R(l), for some line /. That is, T =
[R(O)]"*R(}) = R(O)R(l) = a glide-reflection, by Lemma 3.4.8.

3.4.10 THEOREM. A product of three reflections in lines is either a reflection
in a line or a glide-reflection.

3.4 Isometries
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For a product of three reflections in lines is an opposite isometry, and
(by Theorem 3.4.9) an opposite isometry is either a reflection in a line or
a glide-reflection.

PROBLEMS

1. Prove that an isometry maps straight lines into straight lines.

2. (a) Show that the product of two rotations is a rotation or a translation.
(b) Show that a direct isometry which is not a translation has exactly one
invariant point.

3. (a) Prove that any isometry with an invariant point is a rotation or a reflection
in a line according as it is direct or opposite.

(b) Prove that every opposite isometry with no invariant point is a glide-
reflection.

(c) Prove that if an isometry has more than one invariant point, it must be
either the identity or a reflection in a line.

4, (a) Show that R(I)T(AB) is a glide-reflection whose axis is a line m parallel
to / at a distance equal to one-half the projection of BA on a line perpendicular
to I, and whose vector is the projection of 4B on /.

(b) Show that T(4AB)R(]) is a glide-reflection whose axis is a line m parallel to /
at a distance equal to one-half the projection of “AB on a line perpendicular to /,
and whose vector is the projection of 4B on /.

5. Show that every opposite isometry is the product of a reflection in a line and a
reflection in a point.

6. Show that T(BA)R(O,0)T(AB) = R(0’,6), where 0’0 is equal and parallel
to AB.

7. Show that R(OO’)R(0,0) = R(l), where [ passes through O and the directed
angle from / to OO’ is 6/2.

8. Let O, O’ be two points on line /. Show that G(/,200’) = R(O’)R(m), where
m is the line through O perpendicular to /.

9. Let 11, 12 N 13 be the lines of the sides Az A3 ’ A3A1, Ax Az ofa triangle A1A2A3 .
(a) Show that G(l5,4,A4,)G(l,, A3 A)G(l,,A, A5) is a glide-reflection.
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(b) Show that [R(/3)R(I;))R(I,)R(I3)R(I;)]? is a translation along /.

(¢c) Show that G(l5,4,A4,)G(l;,A3 A)G(l,A2A3) = R(I3)R(A,,2 X A3).

(d) Show that R(/3)R(I2)R(l,) = R(I3)R(A3,2 X A3).

(e) If triangle A1A2 A5 is acute, show that R(l3)R(I;)R(l,) is a glide-reflection
with axis H,H; and having direction H,H; and length equal to the perimeter
of the orthic triangle H,H, H; of triangle 4,4, A;.

10. If l,, I, I3 are concurrent in a point O, show that R(/53)R(/;)R(l,) is a reflection
in a line through O.

11. If l,, I, , l5 are parallel, show that R(/5)R(/,)R(l,) is a reflection in a line parallel
to 11, 12 N 13 .

3.6 SIMILARITIES

We now examine the similarities.

3.56.1 THEOREM. There is a unique similarity that carries a given non-
collinear triad of points A, B, C into a given similar triad A’, B’, C'.

If the triads are congruent, the unique similarity is the unique isometry
guaranteed by Theorem 3.4.2. If the triads are not congruent, choose a
point O of the plane. Now there is a homothety 7; with center O carrying
the triad 4, B, C into a triad A", B”, C” congruent to the triad 4’, B’, C’,
and (by Theorem 3.4.2) an isometry T, carrying triad A", B”, C” into the
triad A’, B’, C'. Therefore the similarity T, T, carries triad 4, B, C into
triad 4’, B’, C'. But this is the only similarity, for if P is any point of the
plane there is a unique point P’ such that P’A’ = kPA, P'B’ = kPB, P'C’' =
kPC, where k = A'B'|AB.

3.56.2 THEOREM. Every nonisometric similarity has a unique invariant point.

Let k # 1 be the ratio of the similarity S and let S carry 4, into 4,. There
is no loss in generality in assuming k < 1, for (since k # 1) either S or §~*
is actually a contraction, and S and S~! have the same invariant points.
If A, = A,, then we have already found an invariant point. If 4, # A4,,
consider the sequence of points A, , 4, A,, A;, ..., where S carries 4; into
Ay, 1=0,1,2,.... If line segment 4,4, has length ¢, then 4,4, has
length kc, A, A; has length k?c, etc. The circle of center A, and radius
¢/(1 — k) is carried into the circle of center A, and radius kc/(1 — k), then
this circle into the circle of center 4, and radius k2c/(1 — k), etc. Since
¢+ ke/(1 — k) =c/(1 — k), these circles (see Figure 3.5a) form a nested
sequence of circles whose radii tend to zero as i increases. By the theorem
of nested sets of analysis, the sequence of circles converges to a point of
accumulation O. Since S carries Ag, A;, A, ...into A;, A,, A5, ..., it
follows that S leaves O invariant. Finally, S can have no more than one
invariant point since the segment determined by two distinct invariant
points would be mapped into itself, instead of being contracted by the ratio k.

3.5 Similarities
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3.56.3 THEOREM. A direct similarity S is either a translation or a homology.

If k=1, S is a direct isometry and is then (by Theorem 3.4.7) either a
translation or a rotation (which is a special homology). If k # 1, S has (by
Theorem 3.5.2) an invariant point O. Then S = TH(O,k), where T is a direct
isometry with invariant point O. It follows that T is a rotation about O,
and S is then a homology of center O.

3.5.4 THEOREM. An opposite similarity S is either a glide-reflection or a
stretch-reflection.

If k =1, S is an opposite isometry and is then (by Theorem 3.4.9) either
a glide-reflection or a reflection in a line (which is a special glide-reflection).
If k # 1, S has (by Theorem 3.5.2) an invariant point O. Then S = TH(O,k),
where T is an opposite isometry with invariant point O. It follows that T'is
a reflection in a line through O, and S is then a stretch-reflection of center O.

3.56.5 THEOREM. A similarity that carries lines into parallel lines is either
a translation or a homothety.

The reader can easily show that this is a corollary of Theorems 3.5.3 and
3.5.4.

3.5.6 THEOREM. If the line segments joining corresponding points of two
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given directly similar figures be divided proportionately, the locus of the
dividing points is a figure directly similar to the given figures.

By Theorem 3.5.3, the two given figures are related by a translation or a
homology. The case of a translation presents no difficulty; the locus of the
dividing points is clearly a figure directly congruent to each of the two given
figures. Suppose, then, that the two given figures are related by a homology
H(O,k,0). Let (see Figure 3.5b) 4,4’ be a fixed and P,P’ a variable pair of

P
r\\\ A' R Al

Se———"
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~

Figure 3.5b ~o

o

corresponding points in the two given figures. Then OP'/OP = OA'/OA =k
and ¥ POP' = X AOA’ = 0. Let P” and A” be taken on 44’ and PP’ such
that PP"/P"P' = AA"/A"A’. Since triangles POP’ and AOA’ are directly
similar, it follows that triangles POP” and AOA" are also directly similar,
and OP"|OP = 0A"|0OA = k', say,and ¥ POP” = x AOA" = @, say. Itfollows
that the locus of P” is the image of the locus of P under the homology
H(0,k',0"). That is, the locus of P” is a figure directly similar to the two
given figures.

PROBLEMS

1. Prove that a similarity maps straight lines into straight lines and circles into
circles.

2. (a) Prove that any direct similarity which is not a translation has an invariant
point.

(b) Prove that any opposite similarity which is not a glide-reflection has an
invariant point.

3. (a) Show thatif T'is an opposite isometry, then 72 is the identity or a translation.
(b) Show that if T is an opposite similarity, then 72 is a translation or a homo-
thety.

4, If /, is perpendicular to /; and O is their point of intersection:

(a) Show that S(O,k,l;,) = S(O,—k,l,).
(b) Lines /; and [/, are invariant under S(O,k,l,).

5. Prove Hjelmslev’s Theorem: When all the points P on one line are related by an
isometry to all the points P’ on another line, the midpoints of the segments
PP’ are distinct and collinear, or else they all coincide.

3.5 Similarities

119



6. If two maps of the same country on different scales are drawn on tracing paper
and then superposed, show that there is just one place that is represented by
the same spot on both maps.

7. What is the product of (a) two stretch-reflections? (b) a homology and a
stretch-reflection?

8. Give a proof of Theorem 3.5.5 utilizing Desargues’ Theorem.

9. Prove the following theorem, which is Problem 4025 of The American Mathe-
matical Monthly (Feb. 1943):

Let A/, A5, ..., A3, be the vertices of equilateral triangles constructed
externally (or internally) on the sides 4,4,, A2 A4, ..., A2, A, of a plane
polygon of 2n sides (P) = A;A, -+ Azn, and M, M,, ..., M, be the mid-
points of the principal diagonals 44,41, A2 Ans2,..., AnAzx of (P). The
midpoints My, M;,..., M, of the principal diagonals A57A4;.,, A} A} ,,,
..., Ai A;a of the polygon (P) = A A;---A;, are the vertices of equi-
lateral triangles constructed upon the sides of the polygon (p) = M, M, - - -
M,.

Generalize by replacing the equilateral triangles by similar isosceles triangles.

10. (a) On the sides BC and CA of a triangle ABC, construct externally any two
directly similar triangles, CBA, and ACB,, Show that the midpoints of the
three segments BC, A,B;, CA form a triangle directly similar to the two given
triangles.

(b) On BC externally and on CA internally, construct any two directly similar
triangles CBA; and CAB;. Show that the midpoints of 4B and A4,B, form
with C a triangle directly similar to the two given triangles.

These two problems constitute Problem E 521 of The American Mathematical

Monthly (Jan. 1943).

3.6 INVERSION

In this section we briefly consider the inversion transformation, which is
perhaps the most useful transformation we have for simplifying plane
figures. Use of this transformation will be made in many parts of our work.

The history of the inversion transformation is complex and not clear-cut.
Inversely related points were known to Frangois Vieta in the sixteenth
century. Robert Simson, in his 1749 restoration of Apollonius’ lost work
Plane Loci, included (on tHe basis of commentary made by Pappus) one of
the basic theorems of the theory of inversion, namely that the inverse of a
straight line or a circle is a straight line or a circle. Simon A. J. L’Huilier
(1750-1840) in his Eléments d’analyse géométrique et d’analyse algébrique
appliquées a la recherche des lieux géométriques (Paris and Geneva, 1808)
gave special cases of this theorem.

But inversion as a simplifying transformation for the study of figures is
a product of more recent times, and was independently exploited by a
number of writers. Biitzberger has pointed out that Jacob Steiner disclosed,
in an unpublished manuscript, a knowledge of the inversion transformation
as early as 1824. It was refound in the following year by the Belgian astron-
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omer and statistician Adolphe Quetelet. It was then found independently
by L. I. Magnus, in a more general form, in 1831, by J. Bellavitis in 1836,
then by J. W. Stubbs and J. R. Ingram, two Fellows of Trinity College,
Dublin, in 1842 and 1843, and by Sir William Thomson (Lord Kelvin) in
1845. Thomson used inversion to give geometrical proofs of some difficult
propositions in the mathematical theory of elasticity. In 1847 Liouville
called inversion the transformation by reciprocal radii. Because of a prop-
erty to be established shortly, inversion has also been called reflection in a

circle.

3.6.1 DEFINITIONS AND NOTATION. If point P is not the center O of circle
O(r), the inverse of P in, or with respect to, circle O(r) is the point P’ lying
on the line OP such that (OP)(OP’) = r2. Circle O(r) is called the circle of
inversion, point O the center of inversion, r the radius of inversion, and r?
the power of inversion. We denote the inversion with center O and power
k> 0 by the symbol I(O,k).

From the above definition it follows that to each point P of the plane,
other than O, there corresponds a unique inverse point P’, and that if P’
is the inverse of P, then P is the inverse of P’. Since there is no point corre-
sponding, under the inversion, to the center O of inversion, we do not have
a transformation of the set S of all points of the plane onto itself. In order
to make inversion a transformation, as defined in Definition 3.1.2, we may
do either of two things. We may let S’ denote the set of all points of the plane
except for the single point O, and then inversion will be a transformation
of the “punctured plane” S’ onto itself. Or we may add to the set S of all
points in the plane a single ideal ““ point at infinity ” to serve as the corre-
spondent under the inversion of the center O of inversion, and then the
inversion will be a transformation of this augmented set S” onto itself. It
turns out that the second approach is the more convenient one, and we
accordingly adopt the following convention.

3.6.2 CONVENTION AND DEFINITIONS. When working with inversion, we
add to the set S of all points of the plane a single ideal point at infinity, to
be considered as lying on every line of the plane, and this ideal point, Z,
shall be the image under the inversion of the center O of inversion, and the
center O of inversion shall be the image under the inversion of this ideal
point Z.* The plane, augmented in this way, will be referred to as the

inversive plane.

Of course, Convention 3.6.2 is at variance with the earlier Convention
2.2.1. But conventions are made only for convenience, and no trouble will

* When inverting the center O of inversion into the ideal point Z at infinity, one is reminded

of Stephen Leacock’s line about the rider who “flung himself upon his horse and rode
off madly in all directions.”

3.6 Inversion
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arise if one states clearly which, if either, convention is being employed.
For some investigations it is convenient to work in the ordinary plane, for
others, in the extended plane, and for still others, in the inversive plane.
It is to be understood that throughout the present section we shall be working
in the inversive plane. The following theorem is apparent.

3.6.3 THEOREM. Inversion is an involutoric transformation of the inversive
plane onto itself which maps the interior of the circle of inversion onto the
exterior of the circle of inversion and each point on the circle of inversion
onto itself.

One naturally wonders if there are any other self-inverse loci besides the
circle of inversion. The next theorem deals with this matter. We recall that
by “circle” is meant a straight line or a circle (see Definition 2.9.4).

3.6.4 THEOREM. A ‘“‘circle” orthogonal to the circle of inversion inverts
into itself.

This is obvious if the “circle” is a straight line, and the proof of Theorem
2.9.3 takes care of the case where the “circle” is a circle. Note that the
“circle” inverts into itself as a whole and not point by point.

The following theorem suggests an easy way to construct the inverse of
any given point distinct from the center of inversion.

3.6.5 THEOREM. A point D outside the circle of inversion, and the point C
where the chord of contact of the tangents from D to the circle of inversion
cuts the diametral line OD, are inverse points.

For (see Figure 3.6a), (OD)(OC) = (OT)* = r2.

T

Figure 3.6a A D

The following four theorems relate the concept of inverse points with
some earlier concepts.

3.6.6 THEOREM. If C, D are inverse points with respect to circle O(r), then
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(AB,CD) = —1, where AB is the diameter of O(r) through C and D; con-
versely, if (AB,CD) = —1, where AB is a diameter of circle O(r), then C and
D are inverse points with respect to circle O(r).

For (see Figure 3.6a), (OC)(OD) = r?> = (OB)? if and only if (4B,CD) =
—1 (by Theorem 2.8.5).

3.6.7 THeorReM. If C, D are inverse points with respect to circle O(r),
then any circle through C and D cuts circle O(r) orthogonally; conversely, if
a diameter of circle O(r) cuts a circle orthogonal to O(r) in C and D, then
C and D are inverse points with respect to O(r).

This, in view of Theorem 3.6.6, is merely an alternative statement of
Theorem 2.9.3.

3.6.8 THEOREM. If two intersecting circles are each orthogonal to a third
circle, then the points of intersection of the two circles are inverse points with
respect to the third circle.

Let two circles intersect in points C and D and let O be the center of
the third circle. Draw OC to cut the two given circles again in D’ and D".
Then D’ and D" are each (by Theorem 3.6.7) the inverse of C with respect
to the third circle. It follows that D' = D" = D, and C and D are inverse
points with respect to the third circle.

It is Theorem 3.6.8 that has led some geometers to refer to inversion as
reflection in a circle. For if two intersecting circles are each orthogonal to
a straight line, then the points of intersection of the two circles are reflections
of each other in the line. Therefore, using the terminology ‘ reflection in a
circle” for “inversion with respect to a circle,” and recalling Convention
3.6.2, we may subsume both the above fact and Theorem 3.6.8 in the single
statement : If two intersecting ‘ circles”’ are each orthogonal to a third * circle,”
then the points of intersection of the two “circles” are reflections of each
other in the third * circle.” Of course the same end can be achieved by using
the terminology ‘‘inversion in a line” for “reflection in a line,” and some
geometers do just this.

3.6.9 TaeoreM. I(0,k,)I(O,k,) = H(O,k,/k,).

Let P be any point and let /(O,k,) carry P into P’ and I(O,k,) carry P’
into P”. Then, if P # O, we have O, P, P’, P” collinear and (OP)(OP’) = k,,
(OP)(OP") = k,, whence O, P, P" are collinear and OP"/OP = k,/k,. If
P = 0, then P'=Z, P" = 0. The theorem now follows.

When a point P traces a given curve C, the inverse point P’ traces a curve
C’ called the inverse of the given curve. The next four theorems investigate
the nature of the inverses of straight lines and circles. The first of the
theorems has already been established as part of Theorem 3.6.4.

3.6 Inversion
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3.6.10 THEOREM. The inverse of a straight line | passing through the
center O of inversion is the line 1 itself.

3.6.11 THEOREM. The inverse of a straight line 1 not passing through the
center O of inversion is a circle C passing through O and having its diameter
through O perpendicular to 1.

Figure 3.6b

Let point A4 (see Figure 3.6b) be the foot of the perpendicular dropped
from O on [. Let P be any other ordinary point on / and let 4’, P’ be the
inverses of A, P. Then (OA)(OA’) = (OP)(OP’), whence OP'/OA’ = OA/OP
and triangles OP’A’, OAP are similar. Therefore X OP'A’ = X OAP = 90°.
It follows that P’ lies on the circle C having OA’ as diameter. Conversely,
if P’ is any point on circle C other than O or 4’, let OP’ cut line / in P.
Then, by the above, P’ must be the inverse of P. Note that point O on circle
C corresponds to the point Z at infinity on /.

3.6.12 THEOREM. The inverse of a circle C passing through the center O
of inversion is a straight line 1 not passing through O and perpendicular to
the diameter of C through O.

Let point A4 (see Figure 3.6¢c) be the point on C diametrically opposite O,
and let P be any point on circle C other than O and A. Let A’, P’ be the

C

LN/

Figure 3.6¢
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inverses of A, P. Then (OA)(OA’) = (OP)(OP"), whence OP'|OA’ = OA/OP
and triangles OP’A’, OAP are similar. Therefore x OA’P’' = £xOPA = 90°.
It follows that P’ lies on the line / through A’ and perpendicular to OA.
Conversely, if P’is any ordinary point on line / other than A4’, let OP’ cut circle
Cin P. Then, by the above, P’ must be the inverse of P. Note that the point
Z at infinity on line / corresponds to the point O on circle C.

3.6.13 THEOREM. The inverse of a circle C not passing through the center
O of inversion is a circle C' not passing through O and homothetic to circle
C with O as center of homothety.

Let P (see Figure 3.6d) be any point on circle C. Let P’ be the inverse of

Figure 3.6d

P and let OP cut circle C again in Q, Q coinciding with P if OP is tangent
to circle C. Let r? be the power of inversion and let k be the power of point
O with respect to circle C. Then (OP)(OP’) = r? and (OP)(OQ) = k, whence
OP'|OQ = r?/k, a constant. It follows that P’ describes the map of the
locus of Q under the homothety H(O,r?/k). That is, P’ describes a circle C’
homothetic to circle C and having O as center of homothety. Since circle
C does not pass through O, circle C’ also does not pass through O.

3.6.14 DEFINITION. A point transformation of a plane onto itself that
carries ““ circles ” into ““ circles ” is called a circular, or Mobius, transformation.

Combining Theorems 3.6.10 through 3.6.13 we have:

3.6.15 THEOREM. Inversion is a circular transformation of the inversive
plane.

PROBLEMS

1. (a) Draw the figure obtained by inverting a square with respect to its center.
(b) Draw the figure obtained by inverting a square with respect to one of its
vertices.

2. (a) What is the inverse of a system of concurrent lines with respect to a point
distinct from the point of concurrence?

(b) What is the inverse of a system of parallel lines?

3.6 Inversion
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3. Prove that a coaxial system of circles inverts into a coaxial system of circles or
into a set of concurrent or parallel lines.

4. (a) Let O be a point on a circle of center C, and let the inverse of this circle
with respect to O as center of inversion intersect OC in B. If C’ is the inverse of
C, show that OB = BC".

(b) Show that the inverse C’ of the center C of a given circle K is the inverse of
the center O of inversion in the circle K’ which is the inverse of the given circle K.
(c) Calling reflection in a line inversion in the line, state the facts of parts (a)
and (b) as a single theorem.

(d) Prove that if two circles are orthogonal, the inverse of the center of either
with respect to the other is the midpoint of their common chord.

5. Prove (for all cases): If two intersecting ‘circles” are each orthogonal to a
third “ circle,” then the points of intersection of the two *circles” are reflections
of each other in the third “circle.”

6. Show that isometries and similarities are circular transformations of the ordinary
plane.

3.7 PROPERTIES OF INVERSION

We first establish a very useful theorem (which will be generalized in a later
chapter) concerning directed angles between two “circles.” We need the
following lemma, whose easy proof will be left to the reader.

3.7.1 Lemma. Let C' (see Figure 3.7a,, and 3.7a,) be the inverse of

Figure 3.7a, Figure 3.7a,

“circle” C, and let P, P’ be a pair of (perhaps coincident) corresponding
points, under an inversion of center O, on C and C' respectively. Then the
tangents (see Definition 2.7.4) to C and C' at P and P’ are reflections of one
another in the perpendicular to OP through the midpoint of PP'.

3.7.2 THEOREM. A directed angle of intersection of two “circles” is un-
altered in magnitude but reversed in sense by an inversion.
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Let C and D be two “circles” intersecting in a point P, their inverses
C’ and D’ intersecting in the inverse P’ of P. Let ¢ and d (see Figure 3.7b)

Figure 3.7b

be the tangents to C and D at P, and let ¢’ and 4’ be the tangents to C’ and
D’ at P'. Since, by Lemma 3.7.1, ¢ and ¢’, as well as d and d’, are reflections
of one another in the perpendicular to OP at the midpoint of PP’, it follows
that the directed angle from c to d is equal but opposite to the directed angle
from ¢’ to d'.

In particular we have:

3.7.3 CoROLLARY. (1) If two ““circles” are tangent, their inverses are
tangent. (2) If two “circles’ are orthogonal, their inverses are orthogonal.

There are other things, besides the magnitudes of angles between “ circles,”
which remain invariant under an inversion transformation. Theorems 3.7.4
and 3.7.6 give two useful invariants of this sort. Theorem 3.7.5 is an important
metrical theorem which shows how inversion affects distances between
points. Theorem 3.7.7 is a sample of a whole class of theorems which are
valuable when using inversion in its role of a simplifying transformation.
When employing a particular transformation in geometry it is of course
important to know both the principal invariants of the transformation and
some of the ways the transformation can simplify figures.

3.7.4 THeoreM. (1) If a circle and two inverse points be inverted with
respect to a center not on the circle, we obtain a circle and two inverse points.
(2) If a circle and two inverse points be inverted with respect to a center on the
circle, we obtain a straight line and two points which are reflections of one
another in the straight line.

Let points 4 and B (see Figure 3.7c) be inverse points with respect to a
circle C and let K be any point. Draw circles C;, C, through 4 and B but
not through K. C,, C, are orthogonal to C (by Theorem 3.6.7). Invert the
figure with respect to center K.

3.7 Properties of Inversion
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Figure 3.7c

(1) If K is not on C, we obtain circles C’, C;, C; and points A’, B’. By
Corollary 3.7.3, C{ and C; are orthogonal to C’, whence (by Theorem
3.6.8) A’ and B’ are inverse with respect to circle C'.

(2) If K'is on C, we obtain a straight line C’, circles C;, C;, and points
A’, B'. By Corollary 3.7.3, C; and C; are orthogonal to C’. It follows that
A', B’ are reflections of one another in line C’.

3.7.5 THEoReM. If P, P’ and Q, Q' are pairs of inverse points with respect
to circle O(r), then P'Q’ = (PQ)r?/(OP)(0Q).

Suppose (see Figure 3.7d) O, P, Q are not collinear. Since (OP)(OP’) =

P

Figure 3.7d
0 4‘

0 o

(00)(0Q’), triangle OPQ is similar to triangle OQ'P’, whence P'Q’/PQ =
0Q'/OP = (0Q')(0Q)/(OP)(0Q) = r?/(OP)(0Q).

The case where O, P, Q are collinear follows from the above case by
letting angle 6 (see Figure 3.7d) approach zero. Or we may give a separate
proof as follows (see Figure 3.7¢):

__ (OP)0OP) =(00)(0Q),

(0Q + QP)OP’' = 0Q(OP' + P'Q"),
o @por)y=0r),
P'Q’' = (QP)(OP")|0Q = (QP)(OP')(OP)/(OP)0Q) = (QP)r*/(OP)(0Q).

Figure 3.7e o 0 r > o
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3.7.6 THEOREM. The cross ratio of four distinct points on a ““circle” is
invariant under any inversion whose center is distinct from each of the four points.

Let 4, B, C, D be the four distinct points on a “circle” K, and let K
invert into “circle” K'.

(1) If K and K’ are both circles, then

(A'B',C'D") = e(4'C'|C'B")[(A'D'|D'B’) (by Theorem 2.6.7)
e(AC/CB)/(AD/DB) (by Theorem 3.7.5)
= (4B,CD). (by Theorem 2.6.7)

(2) If K is a straight line and K’ a circle, then

(A'B',C’'D") = e(A'C’|C'B)|(A’D’'|D'B’) (by Theorem 2.6.7)
= e(AC/CB)/(AD/DB) (by Theorem 3.7.5)
= (AB,CD). (see Problem 2, Section 2.5)

(3) If K is a circle and K’ a straight line, then

(A'B',C'D") = e(A'C’'|C'B")|(A'D’'|D’B’) (see Problem 2, Section 2.5)
= e(AC/CB)/(AD/DB) (by Theorem 3.7.5)
= (4B,CD). (by Theorem 2.6.7)

(4) If K and K’ are both straight lines, then

(A'B',C’'D’) = e(A’C’|C'B')/(A’'D’|D'B’) (see Problem 2, Section 2.5)
= e(AC/CB)/(AD/DB) (by Theorem 3.7.5)
= (4B,CD). (see Problem 2, Section 2.5)

3.7.7 THEOREM. Two nonintersecting circles can always be inverted into
a pair of concentric circles.

Let C, and C, be a pair of nonintersecting circles, and let / be their radical
axis. Using two points on / as centers, draw two circles D, and D, each
orthogonal to both C, and C,. Then (by Theorem 2.10.7 (1)) D, and D,
intersect in two points, P, and P,. Choose either of these two points, say
P,, as a center of inversion and invert the entire figure. C, and C, (by
Theorem 3.6.13) become circles C; and C;. D, and D, (by Theorem
3.6.12) become straight lines D; and Dj, each of which (by Corollary
3.7.3 (2)) cuts circles C; and C; orthogonally. This means that C; and
C; are concentric.

PROBLEMS
1. Two circles intersect orthogonally at P; O is any point on any circle touching
the former circles at Q and R. Prove that the circles OPQ, OPR intersect at
an angle of 45°.

2. If PQ, RS are common tangents to two circles PAR, QAS, prove that the
circles PAQ, RAS are tangent to each other.

3.7 Properties of Inversion
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10.

11.

12.

. (a) Invert with respect to the center of the semicircle the theorem: An angle

inscribed in a semicircle is a right angle.
(b) Invert with respect to 4 the theorem: If 4, B, C, D are concyclic points,
then angles ABD, ACD are equal or supplementary.

. Prove that the circles having for diameters the three chords AB, AC, AD of a

given circle intersect by pairs in three collinear points.

. Given a triangle ABC and a point M. Draw the circles MBC, MCA, MAB,

and then draw the tangents to these circles at M to cut BC, CA, ABin R, S, T.
Prove that R, S, T are collinear.

. If A, B, C, D are four coplanar points with no three collinear, prove that circles

ABC and ADC intersect at the same angle as the circles BDA and BCD.

. Circles K;, K, touch each other at 7, and a variable circle through T cuts

K, K, orthogonally in X;, X, respectively. Prove that X; X, passes througha
fixed point.

. A variable circle K touches a fixed circle K; and is orthogonal to another fixed

circle K,. Show that K touches another fixed circle coaxial with K; and X,.

. A, B, C, D are four concyclic points. If a circle through 4 and B touches one

through C and D, prove that the locus of the point of contact is a circle.
What is the locus of the inverse of a given point in a system of tangent coaxial
circles?

AC is a diameter of a given circle, and chords 4B, CD intersect (produced if
necessary) in a point O. Prove that circle OBD is orthogonal to the given circle.

Solve Problem 4, Section 3.6, parts (a) and (b), by means of Theorem 3.7.4.

3.8 APPLICATIONS OF INVERSION

We give a few illustrations of inversion as a simplifying transformation.
We first emphasize the transform-solve-invert procedure, described in the
introduction to this chapter, by an informal discussion of the problem (see
Figure 3.8a,):

Figure 3.8a,
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Let two circles S| and S, intersect in A and B, and let the diameters of
S, and S, through B cut S, and S, in C and D. Show that line AB passes
through the center of circle BCD.

The figure of the problem involves three lines and three circles, all passing
through a common point B. This suggests that we transform the figure into
a simpler one by an inversion having center B, for under such an inversion
the three lines will (by Theorem 3.6.10) map into themselves, and the three
circles will (by Theorem 3.6.12) map into three lines. For convenience, we
sketch the appearance of the simplified figure, not upon the first figure, as
it would naturally appear, but to the right of the first figure (see Figure
3.8a,). Note that circles BCD, S, = ABD, S, = ABC have become straight

A

s S,

Figure 3.8a,

D (o4

lines D'C’, A'D’, A'C’, respectively, and the straight lines AB, CB, DB have
become the straight lines A’B, C'B, D'B, respectively. Since line BC, being
a diametral line of circle S,, cuts S; orthogonally, we have (by Corollary
3.7.3 (2)) that BC’ is perpendicular to S; = A’D’. Similarly, we have that
BD' is perpendicular to S; = A'C".

Now it is our desire to show that 4B is a diametral line of circle BCD,
or, in other words, to show that 4B is orthogonal to circle BCD. We there-
fore attempt to solve, in the simplified figure, the allied problem: Show that
A'B is perpendicular to D'C’. But this is easily accomplished, for, since BC’
and BD' are perpendicular to A’D’ and A'C’ respectively, B is the ortho-
center of triangle A'D'C’, and A'B must be perpendicular to D'C’.

Since A’'B is perpendicular to D'C’, if we invert the transformation that
carried the first figure into the simplified one, we discover that AB is orthog-
onal to circle BCD, and our original problem is now solved.

The three-part procedure, transform-solve-invert, has carried us through.
Our problem has turned out to be nothing but the inverse, with respect
to the orthocenter as center of inversion, of the fact that the three altitudes
of a triangle are concurrent, and the relation of the problem might well
have been first discovered in just this way.

The five applications of inversion which now follow will be sketched
only briefly, and the reader is invited to supply any missing details.

3.8 Applications of Inversion
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Ptolemy’s Theorem

The following proposition was brilliantly employed by Claudius Ptolemy
(857-165?) for the development of a table of chords in the first book of his
Almagest, the great definitive Greek work on astronomy (see Problem 9, section
1.6). In all probability the proposition was known before Ptolemy’s time, but
his proof of it is the first that has come down to us. It is interesting that a
very simple demonstration of the proposition—indeed, of an extension of
the proposition—can be given by means of the inversion transformation.

3.8.1 PTOLEMY’S THEOREM. In a cyclic convex quadrilateral the product of
the diagonals is equal to the sum of the products of the two pairs of opposite
sides.

Referring to Figure 3.8b, subject the quadrilateral and its circumcircle

Figure 3.8b 4 C o

D

to the inversion I(4,1). The vertices B, C, D map into points B’, C’, D’
lying on a straight line. It follows that B'C' + C'D’ = B'D’, whence (by
Theorem 3.7.5)

BC/(AB - AC) + CDJ(AC + AD) = BD/(AB - AD),
or
BC+AD + CD - AB = BD - AC.

If quadrilateral ABCD is not cyclic, then B’, C’, D' will not be collinear
and B'C’'+ C'D' > B'D’. Using this fact the reader can easily supply a
proof, fashioned after the above, for the following:

3.8.2 EXTENSION OF PTOLEMY’S THEOREM. In a convex quadrilateral
ABCD,

BC-AD + CD-AB=BD - AC,
with equality if and only if the quadrilateral is cyclic.
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Pappus’ Ancient Theorem

In Book IV of Pappus’ Collection appears the following beautiful proposition,
referred to by Pappus as being already ancient in his time. The proof of
the proposition by inversion is singularly attractive.

3.8.3 PAPPUS’ ANCIENT THEOREM. Let X, Y, Z be three collinear points
with Y between X and Z, and let C, C,, K, denote semicircles, all lying on the
same side of XZ, on XZ, XY, YZ as diameters. Let K,, K,, K5, . .. denote
circles touching C and C,, with K, also touching K, K, also touching K,,
K; also touching K,, and so on. Denote the radius of K, by r,, and the
distance of the center of K, from XZ by h,. Then h, = 2nr,,.

Subject the figure to the inversion I(X,t2), where ¢, is the tangent length
from X to circle K,. Then (see Figure 3.8c) K, inverts into itself, C and C,

Figure 3.8c ¢,

X Y VA

invert into a pair of parallel lines tangent to K, and perpendicular to XZ.
Ky, K, K,, ..., K,_, invert into a semicircle and circles, all of the same
radius, tangent to the two parallel lines and such that K| touches Kj,
K; touches K, ..., K,_, touches K,_, and also K,. It is now clear that
, = 2nr,.

Feuerbach’s Theorem

Geometers universally regard the so-called Feuerbach’s Theorem as un-
doubtedly one of the most beautiful theorems in the modern geometry of
the triangle. The theorem was first stated and proved by Karl Wilhelm
Feuerbach (1800-1834) in a work of his published in 1822; his proof was
of a computational nature and employed trigonometry. A surprising number
of proofs of the theorem have been given since, but probably none is as neat
as the following proof employing the inversion transformation. We first
state two definitions.

3.8.4 DEFINITION. A circle tangent to one side of a triangle and to the
other two sides produced is called an excircle of the triangle. (There are
four circles touching all three side lines of a triangle—the incircle and three
excircles.)

3.8 Applications of Inversion
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3.8.6 DEFINITION. Two lines are said to be antiparallel relative to two
transversals if the quadrilateral formed by the four lines is cyclic.

3.8.6 FEUERBACH’S THEOREM. The nine-point circle of a triangle is tangent
to the incircle and to each of the excircles of the triangle.

Figure 3.8d shows the incircle () and one excircle (I') of a triangle ABC.

Figure 3.8d

The four common tangents to these two circles determine the homothetic
centers 4 and K lying on the line of centers /', and we have (4K, II') = —1.
If D, X, X, are the feet of the perpendiculars from A4, I, I' on line BC, we
then have (DK,XX;) = —1. Now the line segments BC and XX, have a
common midpoint 4’, and

M (A'K)(A'D) = (A'X)* = (A'X,)>.

Subject the figure to the inversion I(4’,A’X?). The circles (I) and (I')
invert into themselves. Since the nine-point circle passes through A’ and
D, it follows that this circle inverts into a straight line through K, the inverse
of D by (1). Also, the angle which this line makes with BC is equal but
opposite to the angle which the tangent to the nine-point circle at D makes
with BC, or therefore equal in both magnitude and sign to the angle which
the tangent to the nine-point circle at 4’ makes with BC. But it is easily
shown that this latter tangent is parallel to the opposite side of the orthic
triangle, and therefore antiparallel to BC relative to AB and AC. But EF
is antiparallel to BC relative to AB and AC. It follows that line EF is the
inverse of the nine-point circle. Since this line is tangent to both (/) and (I'),
we have that the nine-point circle is tangent to both (/) and (I’). That the
nine-point circle is tangent to each of the other excircles can be shown in
a like manner.

Steiner’s Porism

Consider a circle C, lying entirely within another circle C,, and a sequence
of circles, K, K,, ..., each having external contact with C, and internal
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contact with C,, and such that K, touches K;, K; touches K,, and so on.
A number of interesting questions suggest themselves in connection with
such a figure. For example, can it ever be that the sequence K, K, ... is
finite, in the sense that finally a circle K, of the sequence is reached which
touches both K,_, and K,? Do the points of contact of the circles K,, K,,
... lie on a circle? Do their centers lie on a circle? Etc. The figure was a
dear one to Jacob Steiner, and he proved a number of remarkable properties
of it. It seems that the best way to study the figure is by the inversion trans-
formation. We content ourselves here with a proof of just one of Steiner’s
theorems. We first formulate a definition.

3.8.7 DEFINITION. A Steiner chain of circles is a sequence of circles, finite
in number, each tangent to two fixed nonintersecting circles and to two
other circles of the sequence.

3.8.8 STEINER’S PORISM. If two given nonintersecting circles admit a Steiner
chain, they admit an infinite number, all of which contain the same number of
circles, and any circle tangent to the two given circles and surrounding either
none or both of them is a member of such a chain.

The proof is simple. By Theorem 3.7.7, the two given circles may be
inverted into a pair of concentric circles, the circles of the Steiner chain
then becoming a Steiner chain of equal circles for the two concentric circles.
Since the circles of this associated Steiner chain may each be advanced
cyclically in the ring in which they lie to form a similar chain, and this can
be done in infinitely many ways, the theorem follows.

Theorem 3.8.8 is representative of a whole class of propositions in which
there is a condition for a certain relation to subsist, but if the condition
holds then the relation subsists infinitely often. Such propositions are called
porisms. Three books of porisms by Euclid have been lost.

Peaucellier's Cell

An outstanding geometrical problem of the last half of the nineteenth
century was to discover a linkage mechanism for drawing a straight line.
A solution was finally found in 1864 by a French army officer, A. Peaucellier
(1832-1913), and an announcement of the invention was made by A. Mann-
heim (1831-1906), a brother officer of engineers and inventor of the so-called
Mannheim slide rule, at a meeting of the Paris Philomathic Society in 1867.
But the announcement was little heeded until Lipkin, a young student of
the celebrated Russian mathematician Chebyshev (1821-1894), independently
reinvented the mechanism in 1871. Chebyshev had been trying to demon-
strate the impossibility of such a mechanism. Lipkin received a substantial
reward from the Russian Government, whereupon Peaucellier’s merit was
finally recognized and he was awarded the great mechanical prize of the

3.8 Application of Inversion
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Institut de France. Peaucellier’s instrument contains 7 bars. In 1874 Harry
Hart (1848-1920) discovered a 5-bar linkage for drawing straight lines, and
no one has since been able to reduce this number of links or to prove that
a further reduction is impossible. Both Peaucellier’s and Hart’s linkages are
based upon the fact that the inverse of a circle through the center of inversion
is a straight line.

The subject of linkages became quite fashionable among geometers, and
many linkages were found for constructing special curves, such as conics,
cardioids, lemniscates, and cissoids. In 1933, R. Kanayama published (in
the Téhoku Mathematics Journal, v. 37, 1933, pp. 294-319), a bibliography
of 306 titles of papers and works on linkage mechanisms written between
1631 and 1931. It has been shown (in Scripta Mathematica, v. 2, 1934, pp.
293-294) that this list is far from complete, and of course many additional
papers have appeared since 1931.

It has been proved that there exists a linkage for drawing any given
algebraic curve, but that there cannot exist a linkage for drawing any tran-
scendental curve. Linkages have been devised for mechanically solving
algebraic equations.

3.8.9 PEAUCELLIER’S CELL. In Figure 3.8e, let the points A and B of the

Figure 3.8e

P’

Jjointed rhombus PAP’'B be joined to the fixed point O by means of equal bars
OA and OB, OA > PA. Then, if all points of the figure are free to move
except point O, the points P and P’ will describe inverse curves under the
inversion 1(0,0A* — PA?). In particular, if a seventh bar DP, DP > OP/2, is
attached to P and the point D fixed so that DO = DP, then P’ will describe
a straight line.
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10.

11.

For we have
(OP)(OP") =(0C — PC)OC + PC)
= 0C? - PC?
= (0C? + CA?) — (PC?* + CA4?)
= 0A* — PA>.

PROBLEMS

. Prove that if a circle C, inverts into a circle C,, then the circle of similitude

of C, and C, inverts into the radical axis of C; and C,.

. Circles OBC, OCA, OAB are cut in P, Q, R respectively by another circle

through O. Prove that (BP)(CQ)(AR) = (CP)(AQ)(BR).

. Let T, T,T-T. be a convex quadrilateral inscribed in a circle C. Let Cy, C;, C3,

C, be four circles touching circle C externally at Ty, T,, T5, T, respectively.
Show that

tyal3a + l23lay = li3l2a,

where t,; is the length of a common external tangent to circles C; and C;.
(This is a special case of a more general theorem due to Casey. It can be
considered as a generalization of Ptolemy’s Theorem.)

. (a) If A(a) and B(b) are two orthogonal circles, show that I(B,b*)I(A,a?)

= I(A,a®I(B,b>).
(b) If K, K., are two orthogonal circles, 4, A’ inverse points in K,;, B and B’
the inverses of 4 and 4’ in K,, show that B, B’ are inverse points in K;.

. If A, B, C, D are four concyclic points in the order 4, C, B, D, and if p, q, r

are the lengths of the perpendiculars from D to the lines AB, BC, CA respec-
tively, show that

AB|p = BClq + CA|r.

. Let C’ be the inverse of circle C under the inversion I(0,r?), and let p and p’

be the powers of O with respect to C and C’ respectively. Show that pp’ = r4.

. Prove that the product of three inversions in three circles of a coaxial system

is an inversion in a circle of that system.

. We call the product R(0)I(O,r?) an antinversion in circle O(r).

(a) Show that an antinversion is a circular transformation of the inversive
plane.

(b) Show that a circle through a pair of antinverse points for a circle K cuts
K diametrically.

. Show that if two point triads inscribed in the same circle are copolar at a point

C, then the inverse with respect to C of either triad is homothetic to the other
triad.

(a) Show that two circles can be inverted into themselves from any point on
their radical axis and outside both circles.
(b) When can three circles be inverted into themselves?

Show that a nonintersecting coaxial system of circles can be inverted into a
system of concentric circles.

3.8 Applications of Inversion
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12.

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.

23.

Show that any three circles can be inverted into three circles whose centers are
collinear.
Show that any three points can, in general, be inverted into the vertices of a
triangle similar to a given triangle.
Show that any three noncollinear points can be inverted into the vertices of an
equilateral triangle of given size.
Circle C, inverts into circle C, with respect to circle C. Show that C; and C,
invert into equal circles with respect to any point on circle C.
If a quadrilateral with sides a, b, ¢, x is inscribed in a semicircle of diameter x,
show that

x3 — (@®> + b? + ¢®)x — 2abc = 0.

(This is Problem E 574 of The American Mathematical Monthly, Feb. 1944.)
Prove Theorem 3.8.2.

Prove Ptolemy’s Second Theorem: If ABCD is a convex quadrilateral inscribed
in a circle, then

AC/BD = (AB- AD + CB: CD)/(BA - BC + DA - DC).

(a) If A’, B’ are the inverses of 4, B, then show that 44’, BB’ are antiparallel
relative to AB and A’B’.

(b) If A, B, C, D are four points such that AB and CD are antiparallel relative
to AD and BC, show that the four points can be inverted into the vertices of a
rectangle.

Fill in the details of the proof of Theorem 3.8.6.

Show that the points of contact of the circles of a Steiner chain of circles all
lie on a circle.

A linkage, called Hart’s contraparallelogram (invented by H. Hart in 1874)
is pictured in Figure 3.8f. The four rods AB, CD, BC, DA, AB = CD, BC

B D

Figure 3.8f

= DA, are hinged at 4, B, C, D. If O, P, P’ divide AB, AD, CB proportionately,
and the linkage is pivoted at O, show that O, P, P’ are always collinear and
that P and P’ describe inverse curves with respect to O as center of the in-
version. Hence if a fifth rod EP > OP/2 be pivoted at E with OE = EP, P’
will describe a straight line.

Let four lines through a point ¥ cut a circle in 4, A’; B, B’; C, C’; D, D’
respectively. Show that (4B,CD) = (4’B’,C’D’). (This is Problem 13,
Section 2.5.)
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3.9 RECIPROCATION

We now consider a remarkable transformation of the set S of all points of
the extended plane onto the set T of all straight lines of the extended plane.

3.9.1 DEFINITIONS AND NOTATION. Let O(r) be a fixed circle (see Figure
3.9a) and let P be any ordinary point other than O. Let P’ be the inverse

Figure 3.9a

of P in circle O(r). Then the line p through P’ and perpendicular to OPP’
is called the polar of P for the circle O(r). The polar of O is taken as the line
at infinity, and the polar of an ideal point P is taken as the line through O
perpendicular to the direction OP.
If line p is the polar point P, then point P is called the pole of line p.
The pole-polar transformation set up by circle K = O(r) will be denoted
by P(K) or P(O(r)) and will be called reciprocation in circle K.

Some nascent properties of reciprocation may be found in the works of
Apollonius and Pappus. The theory was considerably developed by Desargues
in his treatise on conic sections of 1639, and by his student Philippe de La
Hire (1640-1718), and then greatly elaborated in the first half of the nine-
teenth century in connection with the study of the conic sections in projective
geometry. The term pole was introduced in 1810 by the French mathe-
matician F. J. Servois, and the corresponding term polar by Gergonne two
to three years later. Gergonne and Poncelet developed the idea of poles and
polars into a regular method out of which grew the elegant principle of
duality of projective geometry. We shall look into the projective aspects of
poles and polars in a later chapter.

The easy proof of the following theorem is left to the reader.

3.9.2 THEOREM. (1) The polar of a point for a circle intersects the circle,
is tangent to the circle at the point, or does not intersect the circle, according
as the point is outside, on, or inside the circle. (2) If point P is outside a circle,
then its polar for the circle passes through the points of contact of the tangents
to the circle from P.

The next theorem is basic in applications of reciprocation.

3.9 Reciprocation
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3.9.3 THeOReM. (1) If, for a given circle, the polar of P passes through Q,
then the polar of Q passes through P. (2) If, for a given circle, the pole of line
p lies on line q, then the pole of q lies on p. (3) If, for a given circle, P and Q
are the poles of p and q, then the pole of line PQ is the point of intersection
of p and q.

(1) Suppose P and Q are ordinary points. Let P’ (see Figure 3.9b) be the

0
; 14

Figure 3.9b g f
0o P\ d

inverse of P and Q' the inverse of Q in the given circle, and suppose P’ and
Q are distinct. Then OP - OP' = OQ - OQ’, whence P, P', O, Q' are con-
cyclic and ¥ PP'Q = < PQ’O. But, since Q lies on the polar of P, x PP'Q =
90°. Therefore £ PQ’'O = 90°, and P lies on the polar of Q. If P’ = Q, the
theorem is obvious. The cases where P, or Q, or both P and Q are ideal
points are easily handled.

(2) Let P and Q be the poles of p and g. It is given that g (the polar of
Q) passes through P. It follows, by (1), that p (the polar of P) passes through
0.
(3) Let p and g intersect in R. Then the polar of P passes through R,
whence the polar of R passes through P. Similarly, the polar of R passes
through Q. Therefore line PQ is the polar of R.

3.9.4 CoroLLARY. The polars, for a given circle, of a range of points
constitute a pencil of lines; the poles, for a given circle, of a pencil of lines
constitute a range of points.

3.9.5 DEeFINITIONS. Two points such that each lies on the polar of the
other, for a given circle, are called conjugate points for the circle; two lines
such that each passes through the pole of the other, for a given circle, are
called conjugate lines for the circle.

The reader should find no difficulty in establishing the following facts.

3.9.6 THeorReM. For a given circle: (1) Each point of a line has a conjugate
point on that line. (2) Each line through a point has a conjugate line through
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that point. (3) Of two distinct conjugate points on a line that cuts the circle,
one is inside and the other outside the circle. (4) Of two distinct conjugate lines
that intersect outside the circle, one cuts the circle and the other does not.
(5) Any point on the circle is conjugate to all the points on the tangent to the
circle at the point. (6) Any tangent to the circle is conjugate to all lines through
its point of contact with the circle.

The next few theorems will be found important in the projective theory
of poles and polars.

3.9.7 THEeoOREM. If, for a given circle, two conjugate points lie on a line
which intersects the circle, they are harmonically separated by the points of
intersection.

Let A and B (see Figure 3.9c) be two such points, and let A’ be the inverse

Figure 3.9¢ A// )

of A in the circle. If B= A’, the desired result follows immediately. If
B # A', then A’'B is the polar of A and ¥ A4A’'B =90°. The circle on 4B
as diameter, since it passes through A4’, is (by Theorem 3.6.7) orthogonal
to the given circle. It follows (by Theorem 2.9.3) that 4 and B are harmoni-
cally separated by the points in which their line intersects the circle.

3.9.8 COROLLARY. If a variable line through a given point intersects a
circle, the harmonic conjugates of the point with respect to the intersections
of the line and circle all lie on the polar of the given point.

3.9.9 THEOREM. [If, for a given circle, two conjugate lines intersect outside
the circle, they are harmonically separated by the tangents to the circle from
their point of intersection.

Let a and b (see Figure 3.9d) be two such lines and let .S be their point of
intersection. Since a and b are conjugate lines for the circle, the pole 4 of a
lies on b, and the pole B of b lies on a. Then (by Theorem 3.9.3(3)) line 4B
is the polar of S and must pass through the points P and Q where the

3.9 Reciprocation

141



Figure 3.9d A

tangents from S touch the circle. Now 4 and B are conjugate points, whence
(by Theorem 3.9.7) (4B,PQ) = —1. It follows that (ba,pq) = —1.

3.9.10 TueoreM. If A, B, C, D are four distinct collinear points, and
a, b, ¢, d are their polars for a given circle, then (AB,CD) = (ab,cd).

Referring to Figure 3.9¢, the polars a, b, ¢, d all pass through S, the pole

Figure 3.9¢e

of the line ABCD. Since each polar is perpendicular to the line joining its
pole to the center O of the circle, we see that

(ab,cd) = O(AB,CD) = (4B,CD).

PROBLEMS

1. Establish Theorem 3.9.2.
2. Establish Theorem 3.9.6.

3. If P and Q are conjugate points for a circle, show that (PQ)? is equal to the
sum of the powers of P and Q with respect to the circle.
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4, If PR is a diameter of a circle K; orthogonal to a circle X, of center O, and if
OP meets K, in Q, prove that line QR is the polar of P for K, .

5. (a) If P and Q are conjugate points for circle K, prove that the circle on PQ
as diameter is orthogonal to K.
(b) If two circles are orthogonal, prove that the extremities of any diameter of
one are conjugate points for the other.

6. (a) Let K;, K,, K3 be three circles having a radical circle R, and let P be any
point on R. Show that the polars of P for K,, K, , K5 are concurrent.
(b) A common tangent to two circles K, and K, touches them at P and Q
respectively. Show that P and Q are conjugate points for any circle coaxial
with X, and K, .
(c) The tangent to the circumcircle of triangle ABC at vertex A intersects line
BC at T and is produced to U so that AT = TU. Prove that 4 and U are
conjugate points for any circle passing through B and C.
(d) Let ABC be a right triangle with right angle at B, and let B’ be the midpoint
of AC. Prove that 4 and C are conjugate points for any circle which touches
BB’ at B.
(e) If a pair of opposite vertices of a square are conjugate points for a circle,
prove that the other pair of opposite vertices are also conjugate points for the
circle.

7. Prove Salmon’s Theorem: If P, Q are two points, and PX, QY are the per-
pendiculars from P, Q to the polars of Q, P respectively, for a circle of center O,
then OP/OQ = PX/QY.

3.10 APPLICATIONS OF RECIPROCATION

In this section we give a few applications of the reciprocation transformation.
The first is a proof of Brianchon’s Theorem for a circle (see Problem 4, Section
2.6). This theorem was discovered and published in a paper by C. J. Brianchon
(1785-1864) in 1806, when still a student at the Ecole Polytechnique in Paris,
over 150 years after Pascal had stated his famous mystic hexagram theorem.
Brianchon’s paper was one of the first publications to employ the theory
of poles and polars to obtain new geometrical results, and his theorem
played a leading role in the recognition of the far-reaching principle of
duality. The following proof of Brianchon’s theorem is essentially that given
by Brianchon himself.

3.10.1 BRIANCHON’S THEOREM FOR A CIRCLE. If a hexagon (not necessarily
convex) is circumscribed about a circle, the three lines joining pairs of opposite
vertices are concurrent.

Let ABCDEF (see Figure 3.10a) be a hexagon circumscribed about a
circle. The polars for the circle, of the vertices 4, B, C, D, E, F, form the
sides a, b, ¢, d, e, f of an inscribed hexagon. Since a is the polar of 4 and
d the polar of D, the point ad is (by Theorem 3.9.3(3)) the pole of line AD.
Similarly, the point be is the pole of line BE, and the point cf is the pole of
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Figure 3.10a

line CF. Now, by Pascal’s mystic hexagram theorem, the points ad, be, cf
are collinear. It follows (by Theorem 3.9.4) that the polars AD, BE, CF
are concurrent.

3.10.2 THeorReM. Let ABCD be a complete quadrangle inscribed in a
circle. Then each diagonal point of the quadrangle is the pole, for the circle,
of the line determined by the other two diagonal points.

For we have (see Figure 3.10b) (AD,MQ) = (BC,NQ) = —1, whence (by

Figure 3.10b

P

Corollary 3.9.8) line PR is the polar of point Q. Similarly line QR is the
polar of point P. It then follows (by Theorem 3.9.3 (3)) that line PQ is the
polar of point R.

3.10.3 THE BUTTERFLY THEOREM. Let O be the midpoint of a given chord
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of a circle, let two other chords TU and VW be drawn through O, and let
TW and VU cut the gjven chord in E and F respectively. Then O is the mid-
point of FE.

If the given chord is a diameter of the circle, the theorem is obvious.
Otherwise (see Figure 3.10c) produce TW and VU to intersect in R, and

Figure 3.10c

VT and UW to intersect in S. Then (by Theorem 3.10.2) RS is the polar
of O, whence RS is perpendicular to the diametral line 4OB. But FE is
perpendicular to AOB. Therefore FE is parallel to RS. Now (by Theorem
2.8.11) R(VT,MS) = —1, whence (FE,Ox) = —1, and O bisects FE.

Theorem 3.10.3 has received its name from the fancied resemblance of
the figure of the theorem to a butterfly with outspread wings. It is a real
stickler if one is limited to the use of only high school geometry.

3.10.4 THeOREM. Let PQR be a triangle and let P', Q', R’ be the poles
of QR, RP, PQ for a circle K. Then P, Q, R are the poles of Q'R’, R'P’, P'Q’
for circle K.

The easy proof is left to the reader.

3.10.5 DerINITIONS. Two triangles are said to be conjugate, or polar, for
a circle if each vertex of one triangle is the pole of a side of the other triangle.
If the triangle is conjugate to itself—that is, each vertex is the pole of the
opposite side—the triangle is said to be self-conjugate, or self-polar, for the
circle.

We merely sketch the proofs of the next two theorems, leaving it to the
reader to draw the accompanying figures and to complete details.
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3.10.6 THEOREM. Two triangles which are conjugate for a circle are co-
polar to one another.

Let ABC and A'B'C’ be a pair of conjugate triangles. Let BC and B'C’
meet in M and let A4’ cut BCin N and B’C’ in N'. Then (by Theorem 3.9.10)
(BC,NM) = A'(C'B',MN) = (B'C',N'M). It now follows that BB, CC’, NN’
are concurrent (by Corollary 2.6.2).

3.10.7 HESSE’S THEOREM FOR THE CIRCLE (1840). If two pairs of opposite
vertices of a complete quadrilateral are conjugate points for a circle, then the
third pair of opposite vertices are also conjugate points for the circle.

Let A, A’; B, B'; C, C’ be the three pairs of opposite vertices of the quad-
rilateral, and suppose 4, A'; B, B’ are conjugate pairs of points for a circle.
Let A"B"C” be the triangle conjugate to triangle 4BC. Now B"C” passes
through A4’, and A”"C” passes through B’. But triangles ABC, A"B"C” are
copolar (by Theorem 3.10.6), and therefore corresponding sides meet in
three collinear points, two of which are seen to be A’ and B’. It follows
that C’ must be the third point. That is, B"4" passes through C’, and C
and C’ are conjugate points.

PROBLEMS

1. A variable chord PQ of a given circle K passes through a fixed point 7. Prove
that the tangents at P and Q intersect on a fixed line z.

2. Assume the theorem: * The feet of the perpendiculars from any point on the
circumcircle of a triangle to the sides of the triangle are collinear.” (The line of
collinearity is called the Simson line of the point for the triangle.)

Let I be the incircle of a triangle ABC, and let perpendiculars through 7
to IA, IB, IC meet a given tangent to the incircle in P, Q, R. Prove that AP,
BQ, CR are concurrent.

3. Consider the two propositions: (1) The lines joining the vertices of a triangle
to the points of contact of the opposite sides with the incircle of the triangle are
concurrent. (2) The tangents to the circumcircle of a triangle at the vertices of
the triangle meet the opposite sides of the triangle in three collinear points.

Show that Proposition (2) can be obtained from Proposition (1) by subjecting
Proposition (1) to a reciprocation in the incircle of the triangle.

4. Draw a figure for Theorem 3.10.6 and verify on it the proof of the theorem
given in the text.

5. If P, Q are two conjugate points for a circle, and R is the pole of PQ, show that
PQOR is a self-conjugate triangle.

6. If a triangle is self-conjugate for a circle, prove that its orthocenter is the center
of the circle.

7. (a) Given an obtuse triangle, prove that there exists one and only one circle
for which the triangle is self-conjugate. (The circle for which an obtuse triangle
is self-conjugate is called the polar circle of the triangle.)
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(b) Prove that the polar circle of an obtuse triangle 4BC has its center at the
orthocenter of the triangle, and its radius equal to [(HA)(HD)]''?, where D
is the foot of the altitude from A.
(c) Prove that the inverse of the circumcircle of an obtuse triangle with respect
to its polar circle is the nine-point circle of the triangle.

8. AB, CD are conjugate chords of a circle. (a) Show that (4B,CD) = —1.
(b) Show that (AC)(BD) = (BC)(AD) = (AB)(CD)/2.

9. (a) Prove, in Figure 3.10b, that triangle POR is self-conjugate for the circle
ABCD.
(b) Show that the circles on PQ, QR, RP as diameters are orthogonal to circle
ABCD.

10. Draw a figure for Theorem 3.10.7 and verify on it the proof of the theorem given
in the text.

11. Let X, Y, Z be the points of contact of the incircle of triangle ABC with the
sides BC, CA, AB respectively, and let P be the point on the incircle dia-
metrically opposite point X.

(a) If A’ is the midpoint of BC, show that AA4’, PX, YZ are concurrent.
(b) If PA, PY, PZ cut line BC in M, Q, R respectively, show that RM = MQ.

3.11 SPACE TRANSFORMATIONS

The elementary point transformations of unextended (three-dimensional)
space are: (1) translation, (2) rotation about an axis, (3) reflection in a point,
(4) reflection in a line, (5) reflection in a plane, and (6) homothety. In (1),
the set S of all points of unextended space is mapped onto itself by carrying
each point P of S into a point P’ of S such that PP’ is equal and parallel
to a given directed segment AB of space. There are no invariant points
under a translation of nonzero vector 4B. In (2), each point P of S is carried
into a point P’ of S by rotating P about a fixed line in space through a given
angle. The fixed line is called the axis of the rotation, and the points of the
axis are the invariant points of the rotation. In (3), each point P of S is
carried into the point P’ of S such that PP’ is bisected by a fixed point O
of space. The fixed point O is the only invariant point of the transformation.
In (4), each point P of S is carried into the point P’ of S such that PP’ is
perpendicularly bisected by a fixed line / of space. This transformation is
obviously equivalent to a rotation of 180° about the line /. In (5), each point
P of S is carried into the point P’ of S such that PP’ is perpendicularly
bisected by a fixed plane p of space, and the points of p are the invariant
points of the transformation. In (6), each point P of S is carried into the
point P’ of S collinear with P and a fixed point O of space, and such that
OP'|OP = k, where k is a nonzero real number. If k # I, the point O is
the only invariant point of the transformation.

Certain compounds of the above elementary point transformations of
space are basic in a study of similarities and isometries in space. These
compounds are: (7) screw-displacement, (8) glide-reflection, (9) rotatory-
reflection, and (10) space homology. A screw-displacement is the product of
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a rotation and a translation along the axis of rotation; a glide-reflection is
the product of a reflection in a plane and a translation of vector AB, where
AB lies in the plane; a rotatory-reflection is the product of a reflection in a
plane and a rotation about a fixed axis perpendicular to the plane; a space
homology is the product of a homothety and a rotation about an axis passing
through the center of the homothety.

Similarities and isometries in space are defined exactly as they were
defined in a plane. Thus, a point transformation of unextended space onto
itself which carries each pair of points 4, B into a pair 4’, B’ such that
A’'B’ = k(AB), where k is a fixed positive number, is called a similarity, and
the particular case where k =1 is called an isometry. A similarity is said to
be direct or opposite according as tetrahedron ABCD has or has not the
same sense as tetrahedron A'B'C'D'.

We lack the space and time to develop the theory of similarities and
isometries of space, and accordingly list the following interesting theorems
without proof.

3.11.1 THEOREM. Every isometry in space is the product of at most four
reflections in planes.

3.11.2 THEOREM. Every isometry in space containing ..n invariant point
is the product of at most three reflections in planes.

3.11.3 THEOREM. FEvery direct isometry in space is the product of two
reflections in lines.

3.11.4 THEOREM. Any direct isometry is either a rotation, a translation,
or a screw-displacement.

3.11.5 THEOREM. Any opposite isometry is either a rotatory-reflection or
a glide-reflection.

3.11.6 THEOREM. Any nonisometric similarity is a space homology.

The inversion transformation of Section 3.6 is also easily generalized to
space.

3.11.7 DEFINITIONS AND NOTATION. We denote the sphere of center O
and radius r by the symbol O(r). If point P is not the center O of sphere
O(r), the inverse of P in, or with respect to, sphere O(r) is the point P’ lying
on the line OP such that (OP)(OP’) = r2. Sphere O(r) is called the sphere of
inversion, point O the center of inversion, r the radius of inversion, and r?
the power of inversion.
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3.11.8 CONVENTION AND DEFINITIONS. When working with inversion in
space, we add to the set S of all points of space a single ideal point at infinity,
to be considered as lying on every plane of space, and this ideal point, Z,
shall be the image under the inversion of the center O of inversion, and the
center O of inversion shall be the image under the inversion of the ideal
point Z. Space, augmented in this way, will be referred to as inversive space.

It is now apparent that space inversion is a transformation of inversive
space onto itself. Much of the theory of planar inversion can easily be
extended to space inversion. For example, if ““sphere’ (with the quotation
marks) denotes either a plane or a sphere, one can prove the following
theorem.

311.9 IHEOREM. In a space im)elsion, “s heles” invert into “Sphe’es >
’
and “ CilCleS’, invert into “ Cl"CleS.”

In particular, one can show that: (1) a plane through the center of inversion
inverts into itself, (2) a plane not through the center of inversion inverts
into a sphere through the center of inversion, (3) a sphere through the
center of inversion inverts into a plane not through the center of inversion,
(4) a sphere not through the center of inversion inverts into a sphere not
through the center of inversion.

The pole-polar relation of Section 3.9 can be generalized to extended
space.

3.11.10 DEerFINITIONS. Let O(r) be a fixed sphere and let P be any ordinary
point other than O. Let P’ be the inverse of P in the sphere O(r). Then the
plane p through P’ and perpendicular to OPP’ is called the polar of P for
the sphere O(r). The polar of O is taken as the plane at infinity, and the
polar of an ideal point P is taken as the plane through O perpendicular to
the direction OP. If plane p is the polar of point P, then point P is called
the pole of plane p.

In the pole-polar relation of extended space we have a transformation of
the set of all points of extended space onto the set of all planes of extended
space. It can be shown that this transformation carries a range of points
into a pencil of planes, and we accordingly have a straight line (considered
as the base of a range of points) associated with a straight line (considered
as the axis of a pencil of planes). This pole-polar transformation of extended
space gives rise to a remarkable principle of duality of extended space.

Besides point transformations mapping a whole three-dimensional space
onto itself, there are point transformations which map a part of space onto
another part of space. Consider, for example, two planes p, and p, in
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unextended space, and a fixed direction not parallel to either plane. We may
induce a transformation of the set of all points of p, onto the set of all
points of p, by the simple procedure of associating with each point of P,
of p, the point P, of p, such that P,P, is parallel to the given direction.
If we consider p, and p, as immersed in extended space, then the trans-
formation carries the line at infinity of p, into the line at infinity of p,. As
another example, again consider two ordinary planes p, and p, in extended
space, and a point O not on either plane. We can induce a transformation
of the set of all points of p, onto the set of all points of p, by associating
with each point P, of p, the point P, of p, such that O, P,, P, are collinear.
These particular transformations that we have been describing are very
important in geometry and they will be discussed in Chapter 6.

We conclude the section with an outline of a point transformation of a
part of inversive space onto another part of itself. The transformation,
known as stereographic projection, was known to the ancient Greeks and
affords a simple and useful method of transferring figures from a plane to
the surface of a sphere, or vice versa.

3.11.11 DEFINITION AND NOTATION. Let K be a sphere of diameter d,
and p a plane tangent to K at its south pole S; let N be the north pole of K.
If P is any point of the sphere other than N, we associate with it the point
P’ of p such that N, P, P’ are collinear. With N we associate the point at
infinity on the inversive plane p. This transformation of the set of all points
of the sphere K onto the set of all points of the inversive plane p is called
stereographic projection.

The proofs of the first two of the following theorems are left to the reader.

3.11.12 THEOREM. The meridians on K correspond to the straight lines on
p through S, and the circles of latitude on K correspond to the circles onp
having center S. In particular, the equator of K corresponds to the circle on
p of center S and radius d.

3.11.13 THEOREM. The circles on K through N correspond to the straight
lines on p.

3.11.14 THeorReM. If points P and Q on the sphere K are reflections of
one another in the equatorial plane of K, then their images P', Q' on plane p
are inverses of one another in the circle S(d) of p.

For (see Figure 3.11a) SP' =d tan PNS, SQ' =d tan QNS. But angles
PNS and QNS are complementary, whence (SP')(SQ’) = d*. Clearly S, P,
Q' are collinear.

Theorem 3.11.14 exhibits an interesting interpretation of a planar inversion.
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Figure 3.11a

0’ P S

To perform a planar inversion, we may first project the figure stereographi-
cally onto a sphere, then interchange the hemispheres by reflection in the
equatorial plane, and finally project stereographically back onto the plane.

3.11.15 THEOREM. Stereographic projection is a space inversion in the
sphere N(d).

For (see Figure 3.11a) NP =d cos PNS, NP'=d sec PNS, whence
(NP)(NP') = d?, and of course N, P, P’ are collinear.

3

3.11.16 THEOREM. Circles on K correspond to

This follows from Theorems 3.11.15 and 3.11.9.

“circles” on p.

3.11.17 THEOREM. The angle between two lines of p is equal to the angle
between their stereographic projections on K.

For two lines AB, AC of p map into circles NA’B’, NA'C’ of K. The
tangents to these circles at N are parallel to 4B and AC respectively. But
the circles intersect at equal angles at N and A’. It follows that an angle
between the circles at A’ is equal to the corresponding angle between the
straight lines at A.

Considered as a mapping of the sphere onto the plane, stereographic
projection furnishes a satisfactory representation on a plane of a limited
region of the sphere. In fact, stereographic projection is one of the most
commonly used methods of constructing geographical maps. Particularly
useful in such maps is the preservation of angles guaranteed by Theorem
3.11.17.

Stereographic projection also furnishes an elegant and timesaving way
of obtaining the formulas of spherical trigonometry from those of plane
trigonometry. This approach to spherical trigonometry was developed by
the crystallographer and mineralogist Giuseppe Cesaro (1849-1939). For an
exposition in English see J. D. H. Donnay, Spherical Trigonometry after the
Cesaro Method (New York: Interscience Publishers, Inc., 1945).
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PROBLEMS

. (a) Which of the elementary point transformations of unextended space are

involutoric? (b) Which are direct isometries? (c) Which are opposite isometries?

. (a) Are the rotation and the translation of a screw-displacement commutative?

(b) Are the reflection and the translation of a glide-reflection commutative?
(c) Are the reflection and the rotation of a rotatory-reflection commutative?

. (a) Give a proof of Theorem 3.11.1 patterned after that of Theorem 3.4.3.

(b) Give a proof of Theorem 3.11.2 patterned after that of Theorem 3.4.4.

4. State a space analogue of Theorem 3.4.2.

10.

11.
12.

13.
14.

15.

. (a) Prove that a translation in space can be factored into a product of reflections

in two parallel planes.
(b) Prove that a rotation about an axis can be factored into a product of
reflections in two planes passing through the axis of rotation.

. Show that the product of reflections in two perpendicular planes is a reflection

in the line of intersection of the two planes.

. Show that if a direct isometry leaves a point O fixed, it leaves some line through

O fixed, that is, the isometry is a rotation.

. Prove Euler’s Theorem on Rotations (1776): The product of two rotations about

axes through a point O is a rotation about an axis through O.

. (a) Show that the product of two rotations of 180° about two given intersecting

lines that form an angle 6 is a rotation of 26 about a line perpendicular to the
two given lines at their point of intersection.

(b) Show that the product of rotations of 180° about three mutually perpen-
dicular concurrent lines is the identity.

In a space homology H let k denote the ratio of homothety and 8 the angle of
rotation. Show that:

(@) If 8 = 0, k = 1, then H is the identity.

(b) If 8 = 180°, k = 1, then H is a reflection in a line.

(c) If 8 = 6, k = 1, then H is a rotation about an axis.

(d) If 8 = 0, k = —1, then H is a reflection in a point.
(e) If 6 = 180°, k = —1, then H is a reflection in a plane.
(f) If 6 = 6,k = —1, then H is a rotatory-reflection.

(g) If 8 = 0, k = k, then H is a homothety.

Show that a “ sphere >’ orthogonal to the sphere of inversion inverts into itself.
Show that a sphere through a pair of inverse points is orthogonal to the sphere
of inversion.

Prove Theorem 3.11.9.

Given a tetrahedron ABCD and a point M, prove that the tangent planes, at M,
to the four spheres MBCD, MCDA, MDAB, MABC, meet the respective faces
BCD, CDA, DAB, ABC in four coplanar lines. (This is Problem E 493 of
The American Mathematical Monthly, June-July 1942).

Prove Frederick Soddy’s Hexlet Theorem (1936): Let S, S:, S5 be three spheres
all touching one another. Let K, K,, ... be a sequence of spheres touching

one another successively and all touching S;, S,, Ss3. Show that K¢ touches
K.
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16. (a) Show that if, for a given sphere, the polar plane of point P passes through
point Q, then the polar plane of point Q passes through point P.
(b) Show that if, for a given sphere, the pole of plane p lies on plane g, the
pole of g lies on p.
(c) Show that if, for a given sphere, the noncollinear points P, Q, R are the
poles of p, g, r, then the pole of plane PQR is the point of intersection of
P, q,r

17. Show that the polars, for a given sphere, of a range of points form a pencil of
planes.

18. Define conjugate points and conjugate planes for a sphere.

19. Define conjugate tetrahedra and self-conjugate tetrahedron of a sphere.

20. (a)_ Establish Theorem 3.11.12.
(b) Establish Theorem 3.11.13.
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4

Euclidean Constructions

4.1 The Euclidean Tools - 4.2 The Method of Loci
4.3 The Method of Transformation - 4.4 The Double
Points of Two Coaxial Homographic Ranges

4.5 The Mohr-Mascheroni Construction Theorem
4.6 The Poncelet-Steiner Construction Theorem

4.7 Some Other Results - 4.8 The Regular
Seventeen-sided Polygon

There is much to be said in favor of a game which you play alone. It can
be played or abandoned whenever you wish. There is no bother about
securing a willing and suitable opponent, nor do you annoy anyone if you
suddenly decide to desist play. Since you are, in a sense, your own opponent,
the company is most congenial and perfectly matched in skill and intelligence,
and there is no embarrassing sarcastic utterance should you make a stupid
play. The game is particularly good if it is truly challenging and if it possesses
manifold variety. It is still better if also the rules of the game are very few
and simple. And little more can be asked if, in addition, the game requires
no highly specialized equipment, and so can be played almost anywhere
and at almost any time.

The Greek geometers of antiquity devised a game—we might call it
geometrical solitaire—which, judged on all the above points, must surely
stand at the very top of any list of games to be played alone. Over the ages
it has attracted hosts of players, and though now well over 2000 years old,
it seems not to have lost any of its singular charm and appeal. This chapter
is concerned with a few facets of this fascinating game, and with some of
its interesting modern variants.



41 THE EUCLIDEAN TOOLS
For convenience we repeat here the first three postulates of Euclid’s Elements:

1. A straight line can be drawn from any point to any point.
2. A finite straight line can be produced continuously in a straight line.
3. A circle may be described with any center and distance.

These postulates state the primitive constructions from which all other
constructions in the Elements are to be compounded. They constitute, so
to speak, the rules of the game of Euclidean construction. Since they restrict
constructions to only those that can be made in a permissible way with
straightedge and compass,* these two instruments, so limited, are known
as the Euclidean tools.

The first two postulates tell us what we can do with a Euclidean straight-
edge; we are permitted to draw as much as may be desired of the straight
line determined by any two given points. The third postulate tells us what
we can do with the Euclidean compass; we are permitted to draw the circle
of given center and having any straight line segment radiating from that
center as a radius—that is, we are permitted to draw the circle of given
center and passing through a given point. Note that neither instrument is
to be used for transferring distances. This means that the straightedge cannot
be marked, and the compass must be regarded as having the characteristic
that if either leg is lifted from the paper, the instrument immediately col-
lapses. For this reason, a Euclidean compass is often referred to as a
collapsing compass ; it differs from a modern compass, which retains its opening
and hence can be used as a divider for transferring distances.

It would seem that a modern compass might be more powerful than a
collapsing compass. Curiously enough, such turns out not to be the case;
any construction performable with a modern compass can also be carried
out (in perhaps a longer way) by means of a collapsing compass. We prove
this fact as our first theorem, right after introducing the following convenient
notation.

4.1.1 NortATioN. The circle with center O and passing through a given
point C will be denoted by O(C), and the circle with center O and radius
equal to a given segment AB will be denoted by O(AB).

4.1.2 THEOREM. The collapsing and modern compasses are equivalent.

To prove the theorem it suffices to show that we may, with a collapsing
compass, construct any circle O(4B). This may be accomplished as follows
(see Figure 4.1a). Draw circles A(O) and O(A) to intersect in D and E;
draw circles D(B) and E(B) to intersect again in F; draw circle O(F). It is an
easy matter to prove that OF = AB, whence circle O(F) is the same as circle
O(AB).

* Though contrary to common English usage, we shall use this word in the singular.
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Figure 4.1a

In view of Theorem 4.1.2, we may dispense with the Euclidean, or col-
lapsing compass, and in its place employ the more convenient modern
compass. We are assured that the set of constructions performable with
straightedge and Euclidian compass is the same as the set performable with
straightedge and modern compass. As a matter of fact, in all our construction
work, we shall not be interested in actually and exactly carrying out the
constructions, but merely in assuring ourselves that such constructions are
possible. To use a phrase of Jacob Steiner, we shall do our constructions
“simply by means of the tongue,” rather than with actual instruments on
paper. We seek then, at least for the time being, the easiest construction to
describe rather than the simplest or best construction actually to carry out
with the instruments.

If one were asked to find the midpoint of a given line segment using only
the straightedge, one would be justified in exclaiming that surely the Euclidean
straightedge alone will not suffice, and that some additional tool or per-
mission must be furnished. The same is true of the combined Euclidean tools;
there are constructions which cannot be performed with these tools alone,
at least under the restrictions imposed upon them. Three famous problems
of this sort, which originated in ancient Greece, are:

1. The duplication of the cube, or the problem of constructing the edge
of a cube having twice the volume of a given cube.

2. The trisection of an angle, or the problem of dividing a given arbitrary
angle into three equal parts.

3. The quadrature of the circle, or the problem of constructing a square
having an area equal to that of a given circle.

The fact that there are constructions beyond the Euclidean tools adds a
certain zest to the construction game. It becomes desirable to obtain a
criterion for determining whether a given construction problem is or is not
within the power of our tools. Synthetic geometry has not been able to
cope with this problem, and we accordingly reserve a discussion of this
interesting facet of Euclidean constructions for a later chapter, where
analytical methods will be employed.

But, in spite of the limited power of our instruments, one is surprised at
the really intricate constructions that can be accomplished with them. Thus,
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though with our instruments we cannot, for example, solve the seemingly
simple problem of drawing the two lines trisecting an angle of 60°, we can
draw all the circles which touch three given circles (the problem of Apollonius);
we can draw three circles in the angles of a triangle such that each circle
touches the other two and also the two sides of the angle (the problem of
Malfatti); we can inscribe in a given circle a triangle whose sides, produced
if necessary, pass through three given points (the Castillon-Cramer problem).

As a concluding remark of this section we point out that Euclid used
constructions in the sense of existence theorems—to prove that certain
entities actually exist. Thus one may define a bisector of a given angle as a
line in the plane of the angle, passing through the vertex of the angle, and
such that it divides the given angle into two equal angles. But a definition
does not establish the existence of the thing being defined; this requires
proof. To show that a given angle does possess a bisector, we show that this
entity can actually be constructed. Existence theorems are very important
in mathematics, and actual construction of an entity is the most satisfying
way of proving its existence. One might define a square circle as a figure
which is both a square and a circle, but one would never be able to prove
that such an entity exists; the class of square circles is a class without any
members. In mathematics it is nice to know that the set of entities satisfying
a certain definition is not just the empty set.

PROBLEMS

1. In the proof of Theorem 4.1.2, show that OF = AB.

2. A student reading Euclid’s Elements for the first time might experience surprise
at the three opening propositions of Book I (for statements of these propositions
see Appendix 1). These three propositions are constructions, and are trivial with
straightedge and modern compass, but require some ingenuity with straightedge
and Euclidean compass.

(a) Solve I 1 with Euclidean tools.

(b) Solve I 2 with Euclidean tools.

(c) Solve I 3 with Euclidean tools.

(d) Show that I 2 proves that the straightedge and Euclidean compass are
equivalent to the straightedge and modern compass.

3. Consider the following two arguments:
1. PROPOSITION. Of all triangles inscribed in a circle, the equilateral is the greatest.

1. If ABC is a nonequilateral triangle inscribed in a circle, so that AB # AC,
say, construct triangle XBC, where X is the intersection of the perpendicular
bisector of BC with arc BAC.

2. Then triangle XBC > triangle ABC.

3. Hence, if we have a nonequilateral triangle inscribed in a circle, we can
always construct a greater inscribed triangle.

4. Therefore, of all triangles inscribed in a circle, the equilateral is the greatest.

II. PROPOSITION. Of all natural numbers, 1 is the greatest.
1. If mis a natural number other than 1, construct the natural number m?.

4.1 The Euclidean Tools
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2. Then m? > m.

3. Hence, if we have a natural number other than 1, we can always construct
a greater natural number.

4. Therefore, of all natural numbers, 1 is the greatest.

Now the conclusion in argument I is true, and that in argument II is false.
But the two arguments are formally identical. What, then, is wrong?

4.2 THE METHOD OF LOCI

In this section we very briefly consider what is perhaps the most basic method
in the solution of geometric construction problems. It can often be used
alone, and often in combination with some other method. It may be con-
sidered as a fundamental maneuver in the construction game.

The solution of a construction problem very often depends upon first
finding some key point. Thus the problem of drawing a circle through three
given points is essentially solved once the center of the circle is located.
Again, the problem of drawing a tangent to a circle from an external point
is essentially solved once the point of contact of the tangent with the circle
has been found. Now the key point satisfies certain conditions, and each
condition considered alone generally restricts the position of the key point
to a certain locus. The key point is thus found at the intersections of certain
loci. This method of solving a construction problem is aptly referred to as
the method of loci.

To illustrate, denote the three given points in our first problem above by
A, B, C. Now the sought center O of the circle through 4, B, C must be
equidistant from 4 and B and also from B and C. The first condition places
O on the perpendicular bisector of 4B, and the second condition places O
on the perpendicular bisector of BC. The point O is thus found at the inter-
section, if it exists, of these two perpendicular bisectors. If the three given
points are not collinear, there is exactly one solution; otherwise there is
none.

Suppose, in our second problem above, we denote the center of the given
circle by O, the external point by E, and the sought point of contact of the
tangent from E to the circle by T. Now T, first of all, lies on the given circle.
Also, since ¥xOTE =90°, T lies on the circle having OF as diameter. The
sought point 7 is thus found at an intersection of these two circles. There
are always two solutions to the problem.

In order to apply the method of loci to the solution of geometric con-
structions, it is evidently of great value to know a considerable number of
loci that are constructible straight lines and circles. Here are a few such loci.

1. The locus of points at a given distance from a given point is the circle
having the given point as center and the given distance as radius.

2. The locus of points at a given distance from a given line consists of
the two lines parallel to the given line and at the given distance from it.

Euclidean Constructions



3. The locus of points equidistant from two given points is the perpen-
dicular bisector of the segment joining the two given points.

4. The locus of points equidistant from two given intersecting lines con-
sists of the bisectors of the angles formed by the two given lines.

5. The locus of points from which lines drawn to the endpoints of a given
line segment enclose a given angle consists of a pair of congruent
circular arcs having the given segment as a chord, the two arcs lying
on opposite sides of the given segment. In particular, if the given angle
is a right angle, the two arcs are the semicircles having the given seg-
ment as diameter.

6. The locus of points whose distances from two given points 4 and B
have a given ratio k # 1 is the circle on IE as diameter, where I and E
divide AB internally and externally in the given ratio. (This is the
circle of Apollonius for the given segment and the given ratio.)

7. The locus of points whose distances from two given intersecting lines
have a given ratio k is a pair of straight lines through the point of
intersection of the given lines. Locus (4) is the special case where k = 1.

8. The locus of points for which the difference of the squares of the
distances from two given points is a constant is a straight line perpen-
dicular to the line determined by the two given points.

9. The locus of points for which the sum of the squares of the distances
from two given points is a constant is a circle having its center at the
midpoint of the segment joining the two given points.

Not only should the reader verify the correctness of each of the above loci,
but he should assure himself that each one can actually be constructed with
compass and straightedge. For example, to construct locus (5) he might lay
off the supplement of the given angle at one end A of the given segment 4B
and then find the center of one of the desired arcs as the intersection of the
perpendicular bisector of 4B and the perpendicular at 4 to the other side
of the layed-off angle. Locus (6) is easily constructed once the points I and
E are found, and the finding of these was the subject matter of Problem
7, Section 2.1. Each of the lines of locus (7) can be found once one point, other
than the intersection of the two given lines, has been found, and such a point
can be found by (2), any two distances having the given ratio being chosen.
To construct locus (8), let the given points be A and B and denote the given
difference of squares of distances by d2. Construct any right triangle having
a leg d and the other leg greater than half of 4B. Using 4 and B as centers
and radii equal to the hypotenuse and other leg, respectively, of the con-
structed right triangle, find a point P on the sought locus. We are here
assuming that P has its greater distance from A. To find the points M’ and
N’ where locus (9) cuts the segment joining the two given points 4 and B,
draw angle BAD = 45° and cut line AD in M and N with circle B(s), where
s is the given sum of squares of distances. Then M’ and N’ are the feet of
the perpendiculars from M and N on AB.

4.2 The Method of Loci
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Let us now consider a few construction problems solvable by the method
of loci.

4.21 PROBLEM. Draw a circle passing through two given points and sub-
tending a given angle at a third point.

Referring to Figure 4.2a, let 4 and B be the two given points and let C

Figure 4.2a

be the third point. Denote the center of the sought circle by O and let T
and T’ denote the points of contact of the tangents to the circle from point
C. Since ¥ TCT' is given, the form of right triangle OTC is known. That is,
we know the ratio OT/OC. But 04/0C = OB/OC = OT/OC. It follows that
O lies on the circle of Apollonius for 4 and C and ratio OT/OC, and on
the circle of Apollonius for B and C and ratio OT/OC. Point O is thus found
at the intersections, if any exist, of these two circles of Apollonius. The
details are left to the reader.

4.2.2 ProBLEM. Find a point the distances of which from three given lines
have given ratios.

Use locus (7).

4.2.3 PrOBLEM. In a triangle find a point the distances of which from the
three vertices have given ratios.

Use locus (6).

4.2.4 PrOBLEM. Construct a triangle given one side, the altitude on that
side, and the sum of the squares of the other two sides.

Find the vertex opposite the given side by using loci (2) and (9).

4.2.5 ProBLEM. Construct a triangle given one side, the opposite angle,
and the difference of the squares of the other two sides.

Find the vertex opposite the given side by using loci (5) and (8).

PROBLEMS
1. Establish the constructions given in the text for loci (1) through (9).
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2. Complete the details of Problem 4.2.1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Construct a triangle given one side and the altitude and median to that side.
. Draw a circle touching two given parallel lines and passing through a given

point.

. Construct a triangle given one side, the opposite angle, and the median to the

given side.

. Find a point at which three given circles subtend equal angles.
. Two balls are placed on a diameter of a circular billiard table. How must one

ball be played in order to hit the other after its recoil from the circumference?

. Through'two given points of a circle draw two parallel chords whose sum shall

have a given length.

. Draw a circle of given radius touching a given circle and having its center on

a given line.

* scribe a right triangle in a given circle so that each leg will pass through a
given point.

Draw a circle of given radius, passing through a given point, and cutting off a
chord of given length on a given line.

Draw a circle tangent to a given line at a given point and also tangent to a given
circle.

Draw a tangent to a given circle so that a given line cuts off on the tangent a
given distance from the point of contact.

Construct a cyclic quadrilateral given one angle, an adjacent side, and the two
diagonals.

Through a given point draw a line intersecting a given circle so that the distances
of the points of intersection from a given line have a given sum.

Find a point from which three parts AB, BC, CD of a given line are seen under
equal angles.

Find the locus of points for which the distances from two given lines have a
given sum.

(a) On the circumference of a given circle find a noint for which the sum of the
distances from two given lines is given.

(b) Find the point on the given circle for which the sum of the distances from
the two given lines is a minimum.

43 THE METHOD OF TRANSFORMATION

There are many geometric construction problems that can be solved by
applying one of the transformations discussed in the previous chapter. We
illustrate this method of transformation by the following sequence of problems,
in which certain details are left to the reader.

4.3.1 PROBLEM. Draw a line in a given direction on which two given circles
cut off equal chords.

4.3 The Method of Transformation
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In Figure 4.3a, let C; and C, be the given circles and let ¢ be a line in

G

Figure 4.3a

(o)) C;

the given direction. Translate C, parallel to ¢ to position C, in which the
line of centers of C; and Cj is perpendicular to 7. Then the line through
the points of intersection, if such exist, of C, and C; is the sought line.

4.3.2 PROBLEM. Through one of the points of intersection of two given
intersecting circles, draw a line on which the two circles cut off equal chords.

In Figure 4.3b, let C, and C, be the two given intersecting circles, and let

Figure 4.3b

P be one of the points of intersection. Reflect C, in point P into position
C, and let Q be the other intersection of C; and C;. Then QP is the sought
line.

4.3.3 PrOBLEM. Inscribe a square in a given triangle, so that one side of
the square lies on a given side of the triangle.

In Figure 4.3c, let ABC be the given triangle and BC the side on which
the required square is to lie. Choose any point D’ on side 4B and construct
the square D’E'F’'G’ as indicated in the figure. If E’ falls on AC, the problem
is solved. Otherwise we have solved the problem for a triangle 4’ BC’ which
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is homothetic to triangle ABC with B as center of homothety. It follows
that line BE’ cuts AC in vertex E of the sought square inscribed in triangle
ABC.

It is interesting, in connection with the last problem, to contemplate that
from a sheer guess of the position of the sought square we were able to
find the actual position of the square. The method employed, often called
the method of similitude, is a geometric counterpart of the rule of false position
used by the ancient Egyptians to solve linear equations in one unknown.
Suppose, for example, we are to solve the simple equation x + x/5 = 24.
Assume any convenient value of x, say x = 5. Then x + x/5 = 6, instead
of 24. Since 6 must be multiplied by 4 to give the required 24, the correct
value of x must be 4(5), or 20. From a sheer guess, and without employment
of algebraic procedures, we have obtained the correct answer.

4.3.4 A GENERAL PROBLEM. Given a point O and two curves C; and C,.
Locate a triangle OP,P,, where P, is on C, and P, is on C,, similar to a
given triangle O'P{P;.

In Figure 4.3d, let C; be the map of C, under the homology
H(O, xP;0'P;, O'P;/O'Py).

Figure 4.3d

4.3 The Method of Transformation
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Then C; and C; intersect in the possible positions of P,. If C; and C, are
“circles,” the problem can be solved with Euclidean tools.

4.3.5 PROBLEM. Draw an equilateral triangle having its three vertices on
three given parallel lines.

In Figure 4.3e, choose any point O on one of the three given parallel lines,

—/

Figure 4.3e o

/o &

and denote the other two parallel lines by C, and C,. We may now apply
the above General Problem 4.3.4 by subjecting line C, to the homology
H(0, 60°, 1).

4.3.6 PROBLEM. Draw a ‘“circle” touching three given concurrent non-
coaxial circles.

In Figure 4.3f, let the three given circles C,, C,, C; intersect in point O.

Figure 4.3f

Subject the figure to any convenient inversion of center O. Then Cy, C,, C;
become three straight lines C;, C;, Cj, which are easily constructed with
Euclidean tools (they are actually the common chords of C;, C,, C; with
the circle of inversion). Draw a circle C’ touching all three of the lines Cj,
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C;, C;. The inverse C of this circle, which can be constructed with Euclidean
tools (if C’ touches C,;, C;, C; at P;, P;, P;, respectively, then C
touches C;, C,, C; at the points P,, P,, P, where OP{, OP;, OP; cut
C,, C,, C; again), is a “circle” touching C;, C,, C5. Note that there are
four solutions to the problem.

The method of homology, illustrated in Problem 4.3.5, and the method
of inversion, illustrated in Problem 4.3.6, are powerful methods, and many
construction problems that would otherwise be very difficult yield to these
methods. They are, of course, instances of the general method of transforma-
tion. Note that Problem 4.3.6, is a special case of the Problem of
Apollonius.

PROBLEMS

1. Place a line segment equal and parallel to a given line segment and having its
extremities on two given circles.

2. From a vessel two known points are seen under a given angle. The vessel
sails a given distance in a known direction, and now the same two points are
seen under another known angle. Find the position of the vessel.

3. In a given quadrilateral inscribe a parallelogram the center of which is at a
given point.

4. Solve the general problem: To a given line draw a perpendicular on which two
given curves will cut off equal lengths measured from the foot of the perpen-
dicular.

5. Place a square with two opposite vertices on a given line and the other two
vertices on two given circles.

6. Draw a triangle given the positions of three points which divide the three sides
in given ratios.

7. Inscribe a quadrilateral of given shape in a semicircle, a specified side of the
quadrilateral lying along the diameter of the semicircle.

8. Given the focus and directrix of a parabola, find the points of intersection of
the parabola with a given line.

9. Draw a circle passing through a given point and touching two given lines.

10. Find points D and E on sides AB and AC of a triangle ABC so that BD = DE
= EC.

11. Draw a triangle given 4, a + b,a + c.

12. Solve the general problem: Through a given point O draw a line intersecting
two given curves C, and C, in points P, and P, so that OP, and OP, shall be
in a given ratio to one another.

13. Through a given point O within a circle draw a chord which is divided by O
in a given ratio.

14. Through a given point O on a given circle draw a chord which is bisected by
another given chord.

4.3 The Method of Transformation
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15. In a given triangle ABC inscribe another, 4’B’C’, which shall have its sides
parallel to three given lines.

16. Two radii are drawn in a circle. Draw a chord which will be trisected by the
radii.

17. In a given parallelogram inscribe an isosceles triangle of given vertex angle
and with its vertex at a given vertex of the parallelogram.

18. Draw an equilateral triangle having its three vertices on three given concentric
circles.

19. Solve the general problem: Through a given point O draw a line cutting two
given curves C, and C; in points P; and P, such that (OP,)(OP,) is a given
constant.

20. Through a given point O draw a line cutting two given lines in points 4 and B
so that (OA)(OB) is given.

21. Through a point of intersection of two circles draw a line on which the two
circles intercept chords having a given product.

22. Draw a circle passing through a given point P and touching two given circles.

23. Draw a circle through two given points and tangent to a given circle.

24. Draw a circle tangent externally to three given mutually external circles.

4.4 THE DOUBLE POINTS OF TWO COAXIAL
HOMOGRAPHIC RANGES

In this section we describe another, and very clever, maneuver in the con-
struction game. Some writers call this maneuver the method of trial and
error. We need the following basic construction.

4.4.1 PrOBLEM. Find the common, or double, points of two distinct coaxial
homographic ranges.

A number of ingenious solutions have been devised for this problem. We
give one here which is based upon simple cross-ratio properties of a circle.
In Figure 4.4a, let 4 and A’, B and B’, C and C’ be three pairs of corres-
ponding points of two distinct coaxial homographic ranges. Draw any
circle in the plane and on it take any point O. Draw the six lines OA4, OB,
OC, OA', OB', OC’ and let them cut the circle again in 4,, B, C,, A,
B{, Cj respectively. Let 4,B] and A[B, intersect in P, and 4,C, and
A1{C, in Q. Draw line PQ. If this line cuts the circle in D, and E,, then the
lines OD; and OE, will intersect the common base of the homographic
ranges in their double points D and E.

To prove the above construction, suppose PQ does cut the circle in points
D, and E,. Let S be the intersection of PQ and 4,A4;. Then

(4B,CD) = O(4,8,,C,D,) = 4(4,B,,C,D;) = (SP,QD,)
= A4,(41B;,C;D,) = O(4B,C;D,) = (4'B',C'D),

166 Euclidean Constructions



Figure 4.4a

and D is a common, or double, point of the two coaxial homographic ranges.
In a similar way it can be shown that E is also a double point of the two
ranges.

Conversely, suppose D is a double point of the two coaxial homographic
ranges. Let D, be the point where OD cuts the circle again, and let 4;D,
and 4,D, cut the line PQ in M and N respectively. Then

(AB,CD) = O(AxBl,C1D1) = Al’(AlBlschl) = (SP,QM)-

Similarly, (4’B’,C’'D) = (SP,QN). But, since D is a double point, (4B,CD) =
(A’'B’,C'D). Therefore (SP,QM) = (SP,QN), or M = N = D,, and PQ passes
through the point D,. It follows that our construction gives all the double
points of the two distinct coaxial homographic ranges.

4.4.2 REeMARKS. (1) Since PQ may intersect, touch, or fail to intersect
the circle, two distinct coaxial homographic ranges have two, one, or no
double points.

(2) The above construction also solves two other important problems:
that of finding the common, or double, rays of two distinct copunctual
homographic pencils, and that of finding the common, or double, points
of two distinct concyclic homographic ranges.

(3) Note that PQ is the Pascal line of the hexagon 4,B{C,A1B;Cj,
whence B,C| and B{C, also intersect on it.

We now illustrate our new maneuver in a solution of the following problem.
4.43 PrOBLEM. Construct a triangle inscribed in one given triangle and
circumscribed about another given triangle.

Referring to Figure 4.4b, let ABC and A'B’C’ be the two given triangles.
We wish to construct a triangle PQR whose vertices P, Q, R lie on the

4.4 The Double Points of Two Coaxial Homographic Ranges
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Figure 4.4b

sides BC, CA, AB of triangle ABC and whose sides QR, RP, PQ pass through
the vertices A’, B’, C’ of triangle A'B’C’. Take an arbitrary point P; on BC
and draw P;C’ to cut AC in Q;; next draw Q; 4’ to cut AB in R;; then draw
R; B’ to cut BCin P;. It is easily seen that range P; is homographic to range
P}, and the desired point P is a double point of these two coaxial homo-
graphic ranges. We may find P by applying Problem 4.4.1.

We now see why the new method is sometimes referred to as the method
of trial and error; from three guesses of the position of a point we find its
actual position.

PROBLEMS
1. Through a given point P draw a line intersecting two given lines m and m’
in corresponding points of two homographic ranges lying on m and m’.

2. Given two homographic pencils, find the pairs of corresponding rays which
intersect on a given line m.

3. Given two homographic pencils, find a pair of corresponding rays which
intersect at a given angle.

4. Given two homographic pencils, find a pair of corresponding rays which are
parallel.

5. Construct a line segment whose extremities lie one each on two given inter-
secting lines, and which subtends a given angle at each of two given points.

6. Find two points on a given line which are isogonal conjugates with respect to
a given triangle.

7. In a given triangle ABC inscribe another, 4’B’C’, which shall have its sides
parallel to three given lines. (This is Problem 15, Section 4.3.)

8. Given four coplanar lines, p, g, r, s. Find points 4 and B on p and g such that
the projections of AB on r and s shall have given lengths.

9. Through a given point draw two lines which cut off segments of given lengths
on two given lines.
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10. Given two fixed points O and O’ on two fixed lines m and m’. Through a fixed
point P draw a line cutting m and m’ in points 4 and 4’ such that 0A4/0’A4’
is a given constant. (This problem was the subject matter of Apollonius’
treatise On Proportional Section.)

11. Given two fixed points O and O’ on two fixed lines m and m’. Through a fixed
point P draw a line cutting m and m’ in points A and A’ such that (0OA4) (0’A4’)
is a given constant. (This problem was the subject matter of Apollonius’
treatise On Spatial Section.)

12. Through a given point draw a line to include with two given intersecting lines
a triangle of given area.

13. Inscribe a triangle in a given triangle such that its sides will subtend given
angles at given points.

14. Solve the Castillon-Cramer Problem: Inscribe in a given circle a triangle whose
sides, produced if necessary, pass through three given points.

15. Circumscribe a triangle about a given circle such that each vertex shall lie on
a given line.

45 THE MOHR-MASCHERONI CONSTRUCTION
THEOREM

The eighteenth-century Italian geometer and poet, Lorenzo Mascheroni
(1750-1800), made the surprising discovery that all Euclidean constructions,
insofar as the given and required elements are points, can be made with the
compass alone, and that the straightedge is thus a redundant tool. Of course,
straight lines cannot be drawn with the compass, but any straight line
arrived at in a Euclidean construction can be determined by the compass
by finding two points on the line. This discovery appeared in 1797 in
Mascheroni’s Geometria del compasso. Generally speaking, Mascheroni
established his results by using the idea of reflection in a line. In 1890, the
Viennese geometer, August Adler (1863-1923), published a new proof of
Mascheroni’s results, using the inversion transformation.

Then an unexpected thing happened. Shortly before 1928, a student of
the Danish mathematician Johannes Hjelmslev (1873-1950), while browsing
in a bookstore in Copenhagen, came across a copy of an old book, Euclides
Danicus, published in 1672 by an obscure writer named Georg Mohr. Upon
examining the book, Hjelmslev was surprised to find that it contained
Mascheroni’s discovery, with a different solution, arrived at a hundred and
twenty-five years before Mascheroni’s publication had appeared.

The present section will be devoted to a proof of the Mohr-Mascheroni
discovery. We shall employ the Mascheroni approach, and shall relegate
Adler’s approach to the problems at the end of the section. We first introduce
a compact and elegant way of describing any given construction. The method
will become clear from an example, and we choose the construction appearing
in Theorem 4.1.2. That construction can be condensed into the following
table:

4.5 The Mohr-Mascheroni Construction Theorem
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A(0), O(4) | D(B), E(B) | O(F)

D E F

The first line of the table tells us what “circles” we are to draw, and the
second line labels the points of intersection so obtained. The table is divided
vertically into steps. Reading the above table we have: Step 1. Draw circles
A(O) and O(A) to intersect in points D and E. Step 2. Draw circles D(B)
and E(B) to intersect in point F. Step 3. Draw circle O(F). It will be noted
that this is precisely the construction appearing in Theorem 4.1.2.

We are now ready to proceed.

4.5.1 PROBLEM. Given points A, B, C, D, construct, with a modern compass
alone, the points of intersection of circle C(D) and line AB.

Case 1. C not on 4B (see Figure 4.5a).

Figure 4.5a

A(C), B(C) | C(D), C:«(CD)

C, XY

Case 2. C on AB (see Figure 4.5b).

A(D), C(D)l C(DDy), D(C) ‘ C(DDy), D«(C) | F(Dy), F«(D) | F(CM), C(D)

F, 4th vertex ‘ F,, 4th vertex M X, Y

D,
of [7 CDIDF’ of /7 CDD:F,
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Figure 4.5b

The proof of case 1 is easy. In case 2, observe (see Figure 4.5b) that

(CM)? = (FM)? — 4a® = (FD,)*—4a* = (9a® + h?) — 4a?
=9a% + r? — a? — 4a* = 4a* + r? = (FX)2.

4.5.2 PROBLEM. Given points A, B, C, D, construct, with a modern compass
alone, the points of intersection of the lines AB and CD (see Figure 4.5c).

E

Figure 4.5¢

The proof of the construction, given on the next page, is easy. We have
C,D,GE similar to C;XCF. But GD, = GE. Therefore CX = CF.

4.5 The Mohr-Mascheroni Construction Theorem

171



C(DD l)’ C(F)’
A(C), BO) 4D, BD) | o | CiG), GDy) | CUO) GICE) | ey
C, D, G, collin- E, either F, collinear X
ear with intersection with Cy, E
C, C,

4.5.3 THE MOHR-MASCHERONI CONSTRUCTION THEOREM. Any Euclidean
construction, insofar as the given and required elements are points, may be
accomplished with the Euclidean compass alone.

For in a Euclidean construction, every new point is determined as an
intersection of two circles, of a straight line and a circle, or of two straight
lines, and the construction, no matter how complicated, is a succession of
a finite number of these processes. Because of the equivalence of modern
and Euclidean compasses (see Theorem 4.1.2), it is then sufficient to show
that with a modern compass alone we are able to solve the following three
problems:

I. Given 4, B, C, D, find the points of intersection of 4(B) and C(D).
II. Given A4, B, C, D, find the points of intersection of 4B and C(D).
III. Given A4, B, C, D, find the point of intersection of AB and CD.

But I is obvious, and we have solved II and III in Problem 4.5.1 and
Problem 4.5.2, respectively.

It is to be noted that our proof of the Mohr-Mascheroni construction
theorem is more than a mere existence proof, for not only have we shown
the existence of a construction using only the Euclidean compass which can
replace any given Euclidean construction, but we have shown how such a
construction can actually be obtained from the given Euclidean construction.
It must be confessed, though, that the resulting construction using only the
Euclidean compass would, in all likelihood, be far more complicated than
is necessary. The task of finding a *“simplest’” construction employing only
the Euclidean compass, or even only the modern compass, is usually very
difficult indeed, and requires considerable ingenuity on the part of the solver.

PROBLEMS

1. Solve or establish, as the case may be, the following constructions using only the
Euclidean compass:
(a) Given points 4 and B, find point C on 4B produced such that 4B = BC.

B(A), A(B) | B(4), R(B) | B(A), S(B)

R S C
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(b) Given points 4 and B, and a positive integer n, find point C on 4B produced
such that AC = n(AB).

(c) Given points O, A, B, find the reflection of O in line AB.

(d) Given points O, D, M, find the inverse M’ of M in circle O(D).

Case 1. OM > (OD)/2.

Oo(D), M(0) | A(0), B(O)

A, B M’

Case 2. OM = (OD))2.

(e) Given noncollinear points 4, B, O, find the center Q of the inverse of line
AB in circle O(D).

Find P, the reflection of O in AB, and then Q, the inverse of P in O(D).
(f) Given points O, D and a circle k not through O, find the center M’ of the
inverse k’ of k in circle O(D).

Find M, the inverse of O in k, and then M’, the inverse of M in O(D).
(g) Given points A, B, C, D, construct, with a Euclidean compass alone, the
points X, Y of intersection of circle C(D) and line AB.
(h) Given points 4, B, C, D, construct, with a Euclidean compass alone, the
point X of intersection of lines AB and CD.

The above steps essentially constitute Adler’s proof of the Mohr-Mascheroni
construction theorem. Note that Mascheroni’s approach exploits reflections in
lines whereas Adler’s approach exploits the inversion transformation.

. Establish the following solution, using a Euclidean compass alone, of the problem
of finding the center D of the circle through three given noncollinear points
A, B, C.

Draw circle A(B). Find (by Problem 1, (d)) the inverse C’ of C in A(B).
Find (by Problem 1, (c)) the reflection D’ of 4 in BC’. Find (by Problem
1, (d)) the inverse D of D’ in A(B).

. Given points 4 and B, find, with a Euclidean compass alone, the midpoint M
of segment AB.

. On page 268 of Cajori’s A History of Mathematics we read: * Napoleon proposed
to the French mathematicians the problem, to divide the circumference of a
circle into four equal parts by the compasses only. Mascheroni does this by
applying the radius three times to the circumference; he obtains the arcs 4B,
BC, CD; then AD is a diameter; the rest is obvious.” Complete the * obvious™
part of the construction.

. Look up the following constructions with compass alone which have appeared in
The American Mathematical Monthly: Problem 3000, Apr. 1924; Problem 3327,
June-July 1929; Problem 3706, June-July 1936; Problem E 100, Jan. 1935;
Problem E 567, Jan. 1944.

4.5 The Mohr-Mascheroni Construction Theorem

173



174

4.6 THE PONCELET-STEINER CONSTRUCTION THEOREM

Though all Euclidean constructions, insofar as the given and required
elements are points, are possible with a Euclidean compass alone, it is an easy
matter to assure ourselves that not all Euclidean constructions are similarly
possible with a Euclidean straightedge alone. To see this, consider the
problem of finding the point M midway between two given points 4 and
B, and suppose the problem can be solved with straightedge alone. That is,
suppose there exists a finite sequence of lines, drawn according to the
restrictions of Euclid’s first two postulates, that finally leads from the two
given points 4 and B to the desired midpoint M. Choose a point O outside
the plane of construction, and from O project the entire construction upon
a second plane not through O. Points 4, B, M of the first plane project into
points A’, B’, M’ of the second plane, and the sequence of lines leading to
the point M in the first plane projects into a sequence of lines leading to the
point M’ in the second plane. The description of the straightedge construc-
tion in the second plane, utilizing the projected sequence of lines, of the
point M’ from the points A’ and B’ is exactly like the description of the
straightedge construction in the first plane, utilizing the original sequence
of lines, of the point M from the points 4 and B. Since M is the midpoint
of AB, it follows, then, that M’ must be the midpoint of 4'B’. But this is
absurd, for the midpoint of a line segment need not project into the mid-
point of the projected segment. It follows that the simple Euclidean problem
of finding the point M midway between two given points A and B is not
possible with the straightedge alone.

Our inability to solve all Euclidean constructions with a straightedge
alone shows that the straightedge must be assisted with the compass, or
with some other tool. It is natural to wonder if the compass can be replaced
by some kind of compass less powerful than the Euclidean and modern
compasses. As early as the tenth century, the Arab mathematician, Ab{i’l-
Wefa (940-998), considered constructions carried out with a straightedge
and a so-called rusty compass, or a compass of fixed opening. Constructions
of this sort appeared in Europe in the late fifteenth and early sixteenth
centuries and engaged the attention, among others, of the great artists
Albrecht Diirer (1471-1528) and Leonardo da Vinci (1452-1519). In this
early work, the motivation was a practical one, and the radius of the rusty
compass was chosen as some length convenient for the problem at hand.
In the middle of the sixteenth century, a new viewpoint on the matter was
adopted by Italian mathematicians. The motivation became a purely aca-
demic one, and the radius of the rusty compass was considered as arbitrarily
assigned at the start. A number of writers showed how all the constructions
in Euclid’s Elements can be carried out with a straightedge and a given
rusty compass. Some real ingenuity is required to accomplish this, as becomes
evident to anyone who tries to construct with a straightedge and a rusty
compass the triangle whose three sides are given.
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But the fact that all the constructions in Euclid’s Elements can be carried
out with a straightedge and a given rusty comoass does not prove that a
straightedge and a rusty compass are together equivalent to a straightedge
and a Euclidean compass. This equivalence was first indicated in 1822 by
Victor Poncelet, who stated, with a suggested method of proof, that all
Euclidean constructions can be carried out with the straightedge alone in
the presence of a single circle and its center. This implies that all Euclidean
constructions can be carried out with a straightedge and a rusty compass,
and that, moreover, the rusty compass need be used only once, and thence-
forth discarded. In 1833, Jacob Steiner gave a complete and systematic
treatment of Poncelet’s theorem. It is our aim in this section to develop
a proof of the above Poncelet-Steiner theorem.

4.6.1 PROBLEM. Given points A, B, U, P, where U is the midpoint of AB
and P is not on line AB, construct, with a straightedge alone, the line through
P parallel to line AB.

Draw (see Figure 4.6a) lines AP, BP, and an arbitrary line BC through

A U B

Figure 4.6a P

B cutting AP in L. Draw UL to cut BP in M. Draw AM to cut BC in N.
Then PN is the sought parallel. The proof follows from the fact that in the
quadrangle ABPN, PN must cut AB in the harmonic conjugate of U for A4
and B; since U is the midpoint of AB, the harmonic conjugate is the point
at infinity on AB.

4.6.2 PROBLEM. Given a circle k with its center O, a line AB, and a point
P not on AB, construct, with straightedge alone, the line through P parallel
to line AB.

Referring to Figure 4.6b, draw any two diameters RS, UV of k not parallel
to AB. Draw (by Problem 4.6.1) PC parallel to RS to cut ABin C, PD parallel
to UV to cut AB in D, DE and CE parallel to RS and UV respectively
to cut in E. Let PE cut DC in M. We now have a bisected segment on
line AB and we may proceed as in Problem 4.6.1.

4.6 The Poncelet-Steiner Construction Theorem
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Figure 4.6b

4.6.3 PROBLEM. Given a circle k with its center O, a line AB, and a point
P not on AB, construct, with straightedge alone, the reflection of P in AB.

Referring to Figure 4.6¢c, draw any diameter CD of k not parallel to 4B.

Figure 4.6¢

Draw (by Problem 4.6.2) chord CE parallel to 4B, and then diameter
FOG and line PQ parallel to DE. Let PQ cut AB in H and let FP and
OH meet in S. Then GS cuts PQ in the sought point P’. If FP and OH are
parallel, draw GS through G parallel to FP to cut PQ in the sought point P’.
In either case, the proof follows from the fact that PHP’ is homothetic to
FOG.

If PQ collines with FG (see Figure 4.6d) the above construction fails. In
this case connect F, O, G with any point S’ not on FG and cut these joins
by a line parallel to FOG, obtaining the points F’, O', G'. We may now
proceed as before.

4.6.4 PROBLEM. Given a circle k with its center O, and points A, B, C,
D, construct, with straightedge alone, the points of intersection of line AB
and circle C(D).

Referring to Figure 4.6e, draw radius OR parallel to CD and let OC,
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Figure 4.6d

RD meet in S. Draw any line DL and then RM parallel to DL to cut SL
in N. Draw NP parallel to AB to cut k in U and V. Now draw US, VS to
cut AB in the sought points X and Y.

Figure 4.6e

If O, D, C colline, find (by Problem 4.6.3) the reflection D’ of D in any
line through C, and proceed as before.

If CD = OR, then S is at infinity, but a construction can be carried out
similar to the above by means of parallels.

If C =0, take S = O (see Figure 4.6f).

Figure 4.6f
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In all cases, a proof is easy by simple homothety considerations.

4.6.5 PROBLEM. Given a circle k with its center O, and points A, B, C,
D, construct, with straightedge alone, the radical axis of circles A(B) and
C(D).

Referring to Figure 4.6g, draw AQ parallel to CD. Find (by Problem

Figure 4.6g

4.6.4) the point P where AQ cuts A(B). AC and PD determine the external
center of similitude S of 4(B) and C(D). Draw any two lines through S to
cut the circles in E, F, G, H and J, K, L, M, which can be found by Problem
4.6.4. Let JF and MG intersect in R and EK and HL in T. Then RT is the
sought radical axis.

A proof may be given as follows. Since arcs FK and HM have the same
angular measure, X HEK = x HLM. Therefore HEKL is concyclic, whence
(TKXTE) = (TL)(TH), and T is on the radical axis of 4(B) and C(D).
R is similarly on the radical axis of A(B) and C(D).

4.6.6 PROBLEM. Given a circle k with its center O, and points A, B, C,
D, construct, with straightedge alone, the points of intersection of circles
A(B) and C(D).

Find, by Problem 4.6.5, the radical axis of 4(B) and C(D). Then, by
Problem 4.6.4, find the points of intersection of this radical axis with A(B).

4.6.7 THE PONCELET-STEINER CONSTRUCTION THEOREM. Any Euclidean
construction, insofar as the given and required elements are points, may be
accomplished with straightedge alone in the presence of a given circle and
its center.

We leave the proof, which can be patterned after that of Theorem 4.5.3,
to the reader.
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PROBLEMS

. It has recently been shown* that the Georg Mohr mentioned in Section 4.5
was the author of an anonymously published booklet entitled Compendium
Euclidis Curiosi, which appeared in 1673 and which in effect shows that all the
constructions of Euclid’s Elements are possible with a straightedge and a given
rusty compass. Solve, with a straightedge and a given rusty compass, the following
first fourteen constructions found in Mohr’s work (see the second reference in
the footnote).

(1) To divide a given line into two equal parts.

(2) To erect a perpendicular to a line from a given point in the given line.
(3) To construct an equilateral triangle on a given side.

(4) To erect a perpendicular to a line from a given point off the given line.
(5) Through a given point to draw a line parallel to a given line.

(6) To add two given line segments.

(7) To subtract a shorter segment from a given segment.

(8) Upon the end of a given line to place a given segment perpendicularly.
(9) To divide a line into any number of equal parts.
(10) Given two lines, to find the third proportional.
(11) Given three lines, to find the fourth proportional.
(12) To find the mean proportional to two given segments.
(13) To change a given rectangle into a square.
(14) To draw a triangle, given the three sides.

2. With a straightedge alone find the polar p of a given point P for a given circie k.

. (a) With a straightedge alone construct the tangents to a given circle k from a
given external point P.
(b) With a straightedge alone construct the tangent to a given circle k at a given
point P on k.

. Given three collinear points 4, B, C with AB = BC, construct, with a straight-
edge alone, (a) the point X on line AB such that AX = n(4AB), where n is a given
positive integer, (b) the point Y on AB such that AY = (4AB)/n.

5. Supply the proof of Theorem 4.6.7.
6. Look up the following constructions with straightedge alone which have appeared

in The American Mathematical Monthly: Problem 3089, Jan. 1929; Problem
3137, June-July 1926; Problem E 539, June-July 1943 and Aug.-Sept. 1948;
Problem E 793, Nov. 1948.

4.7 SOME OTHER RESULTS

There are other construction theorems that are of great interest to devotees
of the construction game, but space forbids us from doing much more than
briefly to comment on a few of them.

It will be recalled that the Poncelet-Steiner theorem states that any
Euclidean construction can be carried out with a straightedge alone in the

* See A. E. Hallerberg, “The geometry of the fixed-compass,” The Mathematics Teacher,
Apr. 1959, pp. 230-244, and A. E. Hallerberg, “Georg Mohr and Euclidis Curiosi,”
The Mathematics Teacher, Feb. 1960, pp. 127-132.
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presence of a circle and its center. It can be shown (by a method similar to
that employed at the start of Section 4.6 to show that the point midway
between two given points cannot be found with straightedge alone) that
the center of a given circle cannot be found by straightedge alone. It follows
that, in the Poncelet-Steiner theorem, the center of the given circle is a
necessary piece of data. But the interesting question arises: How many
circles in the plane do we need in order to find their centers with a straight-
edge alone? It has been shown that two circles suffice provided they intersect,
are tangent, or are concentric; otherwise three noncoaxial circles are
necessary. It also can be shown that the centers of any two given circles can
be found with straightedge alone if we are given either a center of similitude
of the two circles, or a point on their radical axis, and if only one circle is
given, its center can be found with straightedge alone if we are also given
a parallelogram somewhere in the plane of construction. Perhaps the most
remarkable finding in connection with the Poncelet-Steiner theorem is that
not all of the given circle is needed, but that all Euclidean constructions are
solvable with straightedge alone in the presence of a circular arc, no matter
how small, and its center.

Adler and others have shown that all Euclidean constructions are solvable
with a double-edged ruler, be the two edges parallel or intersecting at an angle.
Examples of the latter type of two-edged ruler are a carpenter’s square and
a draughtsman’s triangle. It is interesting that while an increase in the
number of compasses will not enable us to solve anything more than the
Euclidean constructions, two carpenter squares make it possible for us to
duplicate a given cube and to trisect an arbitrary angle. These latter problems
are also solvable with compass and a marked straightedge—that is, a straight-
edge bearing two marks along its edge. Various tools and linkages have
been invented which will solve certain problems beyond those solvable with
Euclidean tools alone. Another interesting discovery is that all Euclidean
constructions, insofar as the given and required elements are points, can be
solved without any tools whatever, by simply folding and creasing the paper
representing the plane of construction.

Suppose we consider a point of intersection of two loci as ill-defined if
the two loci intersect at the point in an angle less than some given small
angle 0, and that otherwise the point of intersection will be considered as
well-defined. The question arises: Can any given Euclidean construction be
accomplished with the Euclidean tools by using only well-defined inter-
sections? Interestingly enough, the answer is an affirmative one, and the
result can be strengthened. In addition to the small angle 6, let us be given
a small linear distance d, and suppose we define a Euclidean construction
to be well-defined if it utilizes only well-defined intersections, straight lines
determined by pairs of points which are a greater distance than d apart,
and circles with radii greater than d. Then it can be shown that any Euclidean
construction can be accomplished by a well-defined one. Another, and easy
to prove, theorem is the following concerning constructions in a limited
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space: Let a Euclidean construction be composed of given, auxiliary, and
required loci G, A, R respectively, and let S be a convex region placed on the
construction such that S contains at least a part G', A’, R’ of each locus of
G, A, R. Then there exists a Euclidean construction determining R’, insofar
as each locus of R' is considered determined by points, from the loci of G',
the construction being performed entirely inside S.

Euclid’s first postulate presupposes that our straightedge is as long as
we wish, so that we can draw the line determined by any two given points
A and B. Suppose we have a straightedge of small finite length ¢, such that
it will not span the distance between A and B. Can we, with our little e-
straightedge alone, still draw the line joining 4 and B? This would surely
seem to be impossible but, curiously enough, after a certain amount of
trial and error, the join can be drawn. Let us show how this may be accom-
plished. After a finite amount of trial and error it is always possible (see
Figure 4.7a) to obtain, with our e-straightedge, two lines 1 and 2 through

Figure 4.7a

A and lying so close to B that the e-straightedge will comfortably span lines
1, 2, and AB. Choose a point P sufficiently close to B and draw three lines
3, 4, 5 through P. Let line 3 cut lines 1 and 2 in points R and R’, and let
line 5 cut lines 1 and 2 in points S and S’. Draw BR and BR’ to cut line 4
in T and T'. Finally, draw ST and S’T" to intersect in C. Then, since triangles
RST, R'S'T’ are copolar at P, they are (by Desargues’ Theorem) coaxial,
and points 4, B, C must be collinear. But our e-straightedge will span B
and C, and thus the line B4 can be drawn.

The problem of finding the “best” Euclidean solution to a required
construction has also been considered, and a science of geometrography was
developed in 1907 by Emile Lemoine for quantitatively comparing one
construction with another. To this end, Lemoine considered the following
five operations:

S;: to make the straightedge pass through one given point,
S,: to rule a straight line,

4.7 Some Other Results
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C,: to make one compass leg coincide with a given point,

C,: to make one compass leg coincide with an arbitrary point of a
given locus,

C;: to describe a circle.

If the above operations are performed m;, m,, n,, n,, n; times in a con-
struction, then m,S; + m, S, + n,C; + n, C, + n; C; is regarded as the
symbol of the construction. The total number of operations, m, + m, + n; +
n, + ny, is called the simplicity of the construction, and the total number
of coincidences, m; + n, + n,, is called the exactitude of the construction.
The total number of loci drawn is m, + n;, the difference between the
simplicity and the exactitude of the construction.

As simple examples, the symbol for drawing the straight line through
A and B is 28, + S,, and that for drawing the circle with center C and
radius AB is 3C; + C;.

Of course the construction game has been extended to three-dimensional
space, but we shall not consider this extension here.

PROBLEMS

1. Prove that the center of a given circle cannot be found with straightedge alone.

2. (a) Prove that, given a parallelogram somewhere in the plane of construction,
we can, with straightedge alone, draw a line parallel to any given line AB through
any given point P.
(b) Prove that, given a parallelogram somewhere in the plane of construction,
we can, with straightedge alone, find the center of any given circle k.

3. (a) Prove that, with straightedge alone, we can find the common center of two
given concentric circles.
(b) Prove that, with straightedge alone, we can find the centers of two given
tangent circles.
(c) Prove that, with straightedge alone, we can find the centers of two given
intersecting circles.

4. Prove that the centers of any two given circles can be found with straightedge
alone if we are given a center of similitude of the two circles.

5. Solve the following problems using a ruler having two parallel edges:
(a) To obtain a bisected segment on a given line AB.
(b) Through a given point P to draw a line parallel to a given line AB.
(c) Through a given point P to draw a line perpendicular to a given line AB.
(d) Given points A4, B, C, D, to find the points of intersection of line AB and
circle C(D).
(e) Given points A4, B, C, D, to find the points of intersection of circles A(B)
and C(D).

6. Show that Problem 5 establishes the theorem: All Euclidean constructions,
insofar as the given and required elements are points, can be accomplished with a
ruler having two parallel edges.
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7.

8.

9.

10.

11.

Look up Euclidean constructions by paper folding in R. C. Yates, Geometrical
Tools, Educational Publishers, Inc., St. Louis (revised 1949).

Look up well-defined Euclidean constructions in Howard Eves and Vern
Hoggatt, ‘“Euclidean constructions with well-defined intersections,” The
Mathematics Teacher, vol. 44, no. 4 (April 1951), pp. 262-3.

Establish the theorem of Section 4.7 concerning Euclidean constructions in a
limited space.

Let us be given two curves m and n, and a point O. Suppose we permit ourselves
to mark, on a given straightedge, a segment MN, and then to adjust the straight-
edge so that it passes through O and cuts the curves m and » with M on m
and N on n. The line drawn along the straightedge is then said to have been
drawn by ‘“the insertion principle.” Problems beyond the Euclidean tools
can often be solved with these tools if we also permit ourselves to use the
insertion principle. Establish the correctness of the following constructions,
each of which uses the insertion principle.

(a) Let AB be a given segment. Draw < ABM = 90° and XABN = 120°.
Now draw ACD cutting BM in C and BN in D and such that CD = AB.
Then (AC)® = 2(AB)3. Essentially this construction for duplicating a cube was
given in publications by Vieta (1646) and Newton (1728).

(b) Let AOB be any central angle in a given circle. Through B draw a line
BCD cutting the circle again in C, AO produced in D, and such that CD = OA,
the radius of the circle. Then X ADB = (X AOB)/3. This solution of the tri-
section problem is implied by a theorem given by Archimedes (ca. 240 B.C.).

Over the years many mechanical contrivances, linkage machines, and com-
pound compasses, have been devised to solve the trisection problem. An
interesting and elementary implement of this kind is the so-called tomahawk.
The inventor of the tomahawk is not known, but the instrument was described
in a book in 1835. To construct a tomahawk, start with a line segment RU
trisected at S and T (see Figure 4.7b). Draw a semicircle on SU as diameter
and draw SV perpendicular to RU. Complete the instrument as indicated in
the figure. To trisect an angle ABC with the tomahawk place the implement on

Figure 4.7b
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the angle so that R falls on BA, SV passes through B, and the semicircle touches
BC, at D say. Show that BS and BT then trisect the angle.

The tomahawk may be constructed with straightedge and compass on tracing
paper and then adjusted on the given angle. By this subterfuge we may trisect
an angle with straightedge and compass.

12. A construction using Euclidean tools but requiring an infinite number of
operations is called an asymprotic Euclidean construction. Establish the follow-
ing two constructions of this type for solving the trisection and the quadrature
problems. (For an asymptotic Euclidean solution of the duplication problem,
see T. L. Heath, History of Greek Mathematics, vol. 1, pp. 268-270.)

(@) Let OT, be the bisector of < AOB, OT, that of XxAOT,, OT; that of
X T,OT,, OT, that of £ T50T,, OTs that of £ T,OTs,, and so forth. Then
lim OT; = OT, one of the trisectors of < AOB. (This construction was given
i»> o
by Fialkowski, 1860.)
(b) On the segment AB, produced mark off B,B, = AB,, B, B; = 2(B,B,),
B3 B, = 2(B, Bs), and so forth. With B,, B,, Bs, . . .ascenters draw the circles
B,(A), B:(A),Bs(A), . ... Let M, be the midpoint of the semicircle on AB,.
Draw B, M, to cut circle B,(A) in M., B; M, to cut circle B;(A)inM,, . ...
Let N, be the projection of M; on the common tangent of the circles at A.
Then lim AN, = quadrant of circle B,(A4).

i> o0

13. Find the symbol, simplicity, and exactitude for the following familiar con-
structions of a line through a given point 4 and parallel to a given line MN.
(a) Through 4 draw any line to cut MN in B. With any radius r draw the
circle B(r) to cut MB in C and AB in D. Draw circle A(r) to cut AB in E.
Draw circle E(CD) to cut circle A(r) in X. Draw AX, obtaining the required
parallel.

(b) With any suitable point D as center draw circle D(A) to cut MN in B and C.
Draw circle C(AB) to cut circle D(A) in X. Draw AX.

(c) With any suitable radius r draw the circle A(r) to cut MN in B. Draw circle
B(r) to cut MN in C. Draw circle C(r) to cut circle A(r) in X. Draw AX.

14. The Arabians were interested in constructions on a spherical surface. Consider
the following problems, to be solved with Euclidean tools and appropriate
planar constructions.

(a) Given a material sphere, find its diameter.

(b) On a given sphere locate the vertices of an inscribed cube.

(c) On a given material sphere locate the vertices of an inscribed regular
tetrahedron.

15. J. S. Mackay, in his Geometrography, regarded the following construction as
probably the simplest way of finding the center of a given circle; the construction
is credited to a person named Swale, in about 1830.
With any point O on the circumference of the given circle as center and any
convenient radius describe an arc PQR, cutting the circle in P and Q. With Q
as center, and with the same radius, describe an arc OR cutting arc PQR in R.
Draw PR, cutting the circle again in L. Then LR is the radius of the given circle,
and the center K may now be found by means of two intersecting arcs.
a) Establish the correctness of Swale’s construction.
b) Find the simplicity and exactitude of the construction.
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4.8 THE REGULAR SEVENTEEN-SIDED POLYGON

In Book IV of Euclid’s Elements are found constructions, with straightedge
and compass, of regular polygons of three, four, five, six, and fifteen sides.
By successive angle, or arc, bisections, we may then with Euclidean tools
construct regular polygons having 3(2"), 4(2"), 5(2"), and 15(2") sides, where
n=0, 1, .... Not until almost the nineteenth century was it suspected that
any other regular polygons could be constructed with these limited tools.

In 1796, the eminent German mathematician Karl Friedrich Gauss, then
only 19 years old, developed the theory that shows that a regular polygon
having a prime number of sides can be constructed with Euclidean tools if
and only if that number is of the form

fin) =22"+ 1.

Forn=0, 1, 2, 3, 4 we find f(n) = 3, 5, 17, 257, 65537, all prime numbers.
Thus, unknown to the Greeks, regular polygons of 17, 257, and 65537 sides
can be constructed with straightedge and compass. For no other value of
n, than those listed above, is it known that f(n) is a prime number. Indeed,
after considerable effort, f(n) has actually been shown to be composite for
a number of values of n > 4, and the general feeling among number theorists
today is that f(n) is probably composite for all n > 4. The numbers f(n) are
usually referred to as Fermat numbers, because the great French number
theorist, Pierre de Fermat (1601-1665), about 1640 conjectured (incorrectly,
as it has turned out) that f(n) is prime for all nonnegative integral n.

Many Euclidean constructions of the regular polygon of 17 sides (the
regular heptadecagon) have been given. In 1832, F. J. Richelot published
an investigation of the regular polygon of 257 sides, and a Professor Hermes
of Lingen gave up ten years of his life to the problem of constructing a
regular polygon of 65537 sides. It has been reported that it was Gauss’s
discovery, at the age of 19, that a regular polygon of 17 sides can be con-
structed with straightedge and compass that decided him to devote his life
to mathematics. His pride in this discovery is evidenced by his request that
a regular polygon of 17 sides be engraved on his tombstone. Although the
request was never fulfilled, such a polygon is found on a monument to
Gauss erected at his birthplace in Braunschweig (Brunswick).

We will not here take up Gauss’s general theory of polygonal construction,
but will merely give an elementary synthetic treatment of the regular 17-
sided polygon. Some of the easy details will be left to the reader, who may
find it interesting to apply an analogous treatment to the construction of a
regular pentagon. We commence with some preliminary matter.

481 LemMa. If C and D are two points on a semicircumference ACDB
of radius R, with C lying between A and D, and if C' is the reflection of C in
the diameter AB, then: (1) (AC)(BD)= R(C'D — CD), (2) (AD)(BC) =
R(C'D + CD), (3) (AC)(BC) = R(CC").

4.8 The Regular Seventeen-sided Polygon
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(1) On DC’' mark off DL = DC and connect A with L, A with D, 4 with
C’, and D with the center O of the semicircle (see Figure 4.8a,). In triangles

Figure 4.8a,

DCA and DLA, DC= DL, DA = DA, and XCDA = xLDA. Therefore
triangles DCA and DLA are congruent, whence AL = AC = AC’, and
triangles BOD and C’'AL are isosceles. But ¥ ABD = xAC'D, whence
triangles BOD and C’'AL are similar and BD/C'L = OB/AC’. That is,
BD|(C'D — CD) = R/AC, or (AC)(BD) = R(C'D — CD).

(2) On C'D produced, mark off DL’ = DC and connect B with L', B with
D, B with C’, and D with O (see Figure 4.8a,). In triangles DCB and DL'B,

Figure 4.8a,

DC = DL', DB= DB, and xCDB = (1/2)(arc CAC'B) = (1/2)(arc BDCC’)
= (1/2)(arc BD + arc DCC’)= xL'DB. Therefore triangles DCB and
DL’B are congruent, whence BL' = BC = BC’, and triangles AOD and C'BL’
are isosceles. But XxBAD = xBC'D, whence triangles AOD and C'BL’
are similar and AD/C’'L' = OA/BC'. That is, AD/(C'D + CD) =R/BC,
or (AD)(BC) = R(C'D + CD).

(3) Since ¥ BCA =90°, we have (AC)(BC) = 2(area triangle BCA) =
(BA)(CC")[2 = R(CC").
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4.8.2 THEOREM. Let the circumference of a circle of radius R be divided
into seventeen equal parts and let AB be the diameter through one of the
points of section, A, and the midpoint B of the opposite arc. Let the points of
section on each side of the diameter AB be consecutively named C,, C,, ...,
Cg and Cy, C;, . .., Cg beginning next to A (see Figure 4.8b). Then

(BC,)(BC,)(BC3)(BC,)(BC5)(BC,)(BC,)(BCs) = RE.

CG__B ¢
(&) (o

JSEAN

w \ cs

AN/
C:\J§\\\ C; 2

A

Figure 4.8b

For, by Lemma 4.8.1 (3), we have (4C))(BC;) = R(C,C})), i=1, ..., 8.
But, since the circumference is divided into equal parts, AC; = CgCs,
AC, =C,C|{, AC3;=C,C;, AC,=C,C;, AC5=C¢Cqy, ACc= C;Cj;,
AC; = C5C4, ACg = C4 C,. The theorem now readily follows.

4.8.3 COROLLARY. (BC,)(BC,)(BC,)(BCg) = R*.

484 CoOROLLARY. (BC,)(BCs)(BC4)(BC,) = R*.

4.8.5 THEOREM. In the notation of Theorem 4.8.2, we have

(BC,)(BC,) = R(BC; + BCs),  (BC,)(BC,) = R(BCs — BCy),
(BGC3)(BCs) = R(BC; + BG;),  (BCe)(BC;) = R(BC, — BC,).

Let us denote the midpoints of arcs AC,, C,C,, C,C;, ..., C,Cg by
Co5,Cis, Cy5,..., Cq.5, and the midpoints of arcs AC;, C|C;, C;C;,
..., GG by Gy, Cis, Cosy ooy Crse

Now, by Lemma 4.8.1 (2),

(AC4 5)(BCy) = R(Cy.5 Cy + C4 5 Cy).
But AC, s = BC,, C;.sC, = BC;, C, 5sC, = BCs, whence, by substitution,

4.8 The Regular Seventeen-sided Polygon
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By Lemma 4.8.1 (1),
(ACo s)(BCy) = R(C3Co.5 — C, Co 5)
But AC, s = BCg, C;C, s = BCq, C,C,.s = BC,, whence, by substitution,
(BC,)(BCg) = R(BC¢ — BC,).
In like manner, using Lemma 4.8.1 (1) and (2), we can show that
(BC;3)(BCs) = R(BC, + BCg), (BCg)(BC;)= R(BC, — BC,).

4.8.6 NOTATION. Set M = BC; + BCs, N=BCs— BC,, P=BC,+
BCB, Q=BC1 —BC4.

4.8.7 THeorREM. MN = PQ — R2.
By Theorem 4.8.5 we have

M = BC3 + BC5 = (BCI)(BC4)/R,
N = BCq — BC; = (BC,)(BCy)/R,

whence, by Corollary 4.8.3,
MN = (BC,)(BC,)(BC,)(BCy)/R? = R*|R* = R%.
Similarly, using Corollary 4.8.4, we can show that PQ = R>.
4.8.8 TueoreM. BC, — BC, + BC; — BC, + BCs; — BC,4 + BC, — BG4

=R.
We have, by Theorem 4.8.7,

R? = MN = (BC, + BCs)(BCs — BC,)
= (BC;3)(BCs) + (BCs)(BCs) — (BC3)(BC) — (BCs)(BCy).

But, by Lemma 4.8.1 (1), we have

(BC3)(BCs) = R(BC3 — BCg),  (BCs)(BCe) = R(BC, — BC),
(BC3)(BC;) = R(BC, — BC;),  (BCs)(BC;) = R(BC, — BCs).

Substituting, we obtain
BCI nd BC2 + BC3 - BC4 + BC5 - BC6 + BC7 - BCB = R.
489 THeoREM. ()(M —N)—(P—-Q)=R,(2)(M — N)(P — Q) =4R2.
(1) We have (using Theorem 4.8.8)
(M—N)-(P-0)

= (BC, + BCs) — (BCs — BC,) — (BC, + BCg) + (BC, — BCy)
— BC, — BC, + BC,; — BC, + BCs — BC4 + BC, — BCg = R.
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(2) By Theorem 4.8.5,

(M - N)P-0Q)
= [(BC5 + BCs) — (BCs — BC,)I(BC; + BCs) — (BC, — BC,))
= — (BC,)(BC3) — (BC)(BCs) + (BC)(BCe) — (BC()(BC,)
+ (BC,)(BC3) + (BC,)(BCs) — (BC,)(BCy) + (BCy)(BC)
+ (BC4)(BCs3) + (BCy)(BCs) — (BC4)(BCe) + (BC,)(BC7)
+ (BC3)(BC3) + (BCg)(BCs) — (BCg)(BCe) + (BCs)(BC5).

But, by Lemma 4.8.1 (1) and (2), we can show that

(BC,)(BC3) = R(BC, + BC,), (BCy)(BCs) = R(BC, + BCs),
(BC,)(BCq) = R(BCs + BC,), (BC)(BC;) = R(BCs + BCs),
(BC,)(BC3) = R(BC, + BCj), (BC,)(BCs) = R(BC; + BC,),
(Bcz)(BC6) = R(BC, + Bcs), (Bcz)(BC7) = R(Bcs - BCB)’
(BC,)(BC3) = R(BC, + BC,), (BC4)(BCs) = R(BC; — BCy),
(BC4)(BC6) = R(BC, — BC7)» (BC4)(BC7) = R(BC; — BCe),
(BCs)(BCs) = R(BCs — BCy), (BCg)(BCs) = R(BC; — BC,),
(BCg)(BCe) = R(BC, — BCy), (BCs)(BC;) = R(BC, — BC,).

Substituting we obtain

(M- N)P-0Q)
= 4R(BC, — BC, + BCy — BC, + BC5 — BCg + BC, — BCg) = 4R2.

4.8.1 PrROBLEM. To construct a regular seventeen-sided polygon.
From the above we have

(M—N)YP-Q)=4R’, (M—-N)—(P-Q)=R,
MN=R?,  PQ=R?
(BC,)(BCg) = RN,  BC, + BCg = P.

Knowing the product and difference of M — N and P — Q, these two quan-
tities can be constructed. Then, knowing the product and difference of M
and N, N can be constructed. Similarly, knowing the product and difference
of P and Q, P can be constructed. Finally, knowing the product and sum
of BC, and BCjy, these quantities can be constructed, and thence the regular
17-sided polygon inscribed in a circle of radius R.

The following sequence of figures shows the actual step-by-step con-
struction (see Problem 9, Section 1.4).

(1) Letab = R. a b

Figure 4.8c
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(2) Take cd = R, ce = 2R.
Then eg = M — N and
ef=P—Q.

(3) Take hi= M — N,
hj = R. Then
jl=M, jk=N.

(4) Take mn=P — Q,
mo = R. Then
ogq=P, op=0Q.
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(5) Find tu, the mean

proportional between
rt=Rand ts=N.

r t s
Figure 4.8g
(6) Take vw = P, vx = tu.
Draw xy parallel to vw x|y
cutting semicircle on
vw at y. Drop yz per-
pendicular to vw. Then
vz=BC8, ZW=BC2- v z w
Figure 4.8h
PROBLEMS

O 00 9 & W

10.

. In 1732, Euler showed that f(5) has the factor 641. Verify this.
. Suppose n = rs, where n, r, s are positive integers. Show that if a regular

n-gon is constructible with Euclidean tools, then so also are a regular r-gon
and a regular s-gon.

. Suppose r and s are relatively prime positive integers and that a regular r-gon

and a regular s-gon are constructible with Euclidean tools. Show that a regular
rs-gon is also so constructible.

. It can be shown that the only regular polygons that can be constructed with

Euclidean tools are those the number n of whose sides can be expressed in
the form

2°f(a)f(@2) - - flow),

where o, o, oz, .., o, are distinct integers and each f(«,) is a prime. On the
basis of this theorem, list those regular n-gons, n < 100, that can be constructed
with Euclidean tools.

. Complete the proof of Theorem 4.8.5.

. Complete the proof of Theorem 4.8.6.

. Verify the details in the proof of Theorem 4.8.8.

. Verify the details in the proof of Theorem 4.8.9.

. Draw a circle and actually, with Euclidean tools, divide its circumference into

17 equal parts.
Show that

BCs = R[—l + V17 + /34 - 2x/1“7]/8
+RJ68 + 1217 — 16434 + 2v17 — 201 — ViTW/34 - 2v17) /8.

4.8 The Regular Seventeen-sided Polygon
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11. Show that Theorem 4.8.2 can be generalized to hold for any regular polygon
of an odd number of sides.

12. (a) Carry out a treatment of the construction of a regular pentagon analogous
to the treatment in the text of the construction of a regular 17-sided polygon.

(b) Show that for the regular pentagon, BC, = R(V5 — 1)/2.

13. Try to verify the following construction of a regular 17-gon (H. W. Richmond,
“To construct a regular polygon of seventeen sides,”” Mathematische Annalen,
vol. 67 (1909), p. 459).

Let OA and OB be two perpendicular radii of a given circle with center O.
Find C on OB such that OC = OB/4. Now find D on OA such that angle
OCD = (angle OCA)/4. Next find E on AO produced such that angle DCE
= 45°, Draw the circle on AE as diameter, cutting OB in F, and then draw the
circle D(F), cutting OA4 and AO produced in G, and G, . Erect perpendiculars
to OA at G, and G, cutting the given circle in P, and Ps. These last points
are the fourth and sixth vertices of the regular 17-gon whose first vertex is A.
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5

Dissection Theory

5.1 Preliminaries - 5.2 Dissection of Polygons into
Triangles - 5.3 The Fundamental Theorem of
Polygonal Dissection - 5.4 Lennes Polyhedra and
Cauchy’s Theorem - 5.5 Dehn’s Theorem

5.6 Congruency (T) and Suss’ Theorem

5.7 Congruency by Decomposition - 5.8 A Brief
Budget of Dissection Curiosities

This chapter is devoted to a subject of great theoretical and recreational
interest, for dissection theory plays an important role in a rigorous develop-
ment of area and volume and also furnishes a seemingly endless variety of
attractive and challenging puzzles.

When two (planar) polygons are such that we may cut one of them into
a finite number of polygonal pieces which can be rearranged to form the
second polygon, we say that the two given polygons are congruent by addition.
The two polygons can thus be considered as made up of sets of corresponding
pieces which are congruent in pairs but perhaps fitted together differently.
The large number of polygonal dissection puzzles and recreations arises
from the remarkable fact that any two polygons having equal areas are
congruent by addition. This fact is known as the fundamental theorem of
polygonal dissection.

The fundamental theorem of polygonal dissection has been discussed by
a number of writers from at least the beginning of the nineteenth century
up to present times, and instances of the theorem appeared in geometry as
early as the days of Greek antiquity. In Section 5.3 we shall present a con-
structive proof of this fundamental theorem. That is, we shall devise a
process by which any two polygons of equal areas may be respectively
dissected into polygonal pieces which are congruent in pairs. It will be



interesting to notice that the process is of more theoretical than practical
interest inasmuch as it will generally lead to a dissection involving more
pieces than are necessary. There is at present no general theory for minimal
dissections.

After establishing the fundamental theorem of polygonal dissection we
shall, in Sections 5.4, 5.5, and 5.6, look at corresponding matters in space,
and shall learn that not always can a given polyhedral solid be dissected
into a finite number of polyhedral pieces which can be fitted together to
form a second given polyhedral solid of the same volume. This interesting
fact was proved in 1902 by Max Dehn (1878-1952) and is of far-reaching
importance in the theory of volumes. It implies that although a theory of
areas of polygons can be constructed without continuity considerations,
such is not possible for a complete theory of volumes of polyhedra. Thus
the ordinary treatment of volumes, such as we find in Euclid’s Elements,
for example, involves infinitesimals, which do not occur in the theory of
polygonal areas. The theory of polyhedral volumes, if it is to be complete,
as well as that of volumes of curved solids, must rest on a theory of integra-
tion.

Other dissection matters in space differ from the corresponding situations
in the plane. Thus, though it is always possible to dissect a polygon into a
finite number of triangles having their vertices only at the vertices of the
polygon, there exist polyhedra, which we shall call Lennes polyhedra, which
cannot be dissected into finite numbers of tetrahedra having their vertices
only at the vertices of the polyhedra. Indeed, much of the theory of the
dissection of polyhedra will be found to be largely of the nature of a make-
shift.

The extension of the idea of congruency by addition to embrace general
point sets is very intriguing, and Section 5.7 is directed to this matter. Here
we encounter some of the most famous and most startling of the paradoxes
of set theory.

In Section 5.8 we shall offer a small collection of planar and spatial
dissection curiosities. Though this collection can easily be considerably
extended, it will incorporate some of the more interesting examples of this
fascinating and highly entertaining subject.

A final word of apology for our treatment is perhaps in order. In an effort
to make the treatment elementary and at the same time relatively brief, we
shall here avoid both the more subtle topological questions surrounding
dissection matters and the delicate questions lying at the base of a rigorous
theory of geometrical measure. In the language of topology, all our polygons
will be homeomorphic to circles, and all our polyhedra will be homeo-
morphic to spheres. This means that the polygons, for example, cannot be
criss-cross, nor can they have ‘““holes” in them, or be in more than one
piece; on the other hand, they need not be convex, but may be reéntrant,
perhaps of spiral form, and so on. We make no effort to define ““area of a
polygon” or “volume of a polyhedron,” but rely on intuitive notions of
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these ideas. A careful and sophisticated treatment of these ideas, developed
from some suitable postulate base, is an important matter in a discussion
of the foundations of geometry.

5.1 PRELIMINARIES

Throughout this section, upper case letters represent either polygons or
polyhedra, so that the notation, definitions, and theorems apply equally to
either class.

5.1.1 NOTATION AND DEFINITIONS.
(a) If P is dissected into the pieces Py, ..., P,, we write
P=P, +---+P,.

(b) If P and Q have the same measure (area or volume, as the case may
be), we say that P and Q are equivalent and we write

P~Q.
(c) If P and Q are congruent, either directly or oppositely, we write
P~Q.
@ If
P=P + -+ P,
Q=0+ " +0,,
P, =0, (i=1,...,n),
we say that P and Q are congruent by addition and we write
P=Q(+).

(e) If there exist R, S, U, ..., U,, V,, ..., V, such that

R=P+U + - +0U,
S=0+Vi+-+V,,
UV, Gi=1,...,n),
R~ S(+),

then we say that P and Q are congruent by subtraction and we write

Pz=Q(-).
Thus P and Q are congruent by subtraction if we can adjoin to P and Q
pairs of congruent pieces so that the final results are congruent by addition.
We also agree to write P~ Q (—) if
P=ZP;,Q=ZQ5, P,E’Q,(_) fori=l,...,n.
i=1 i=1

It is apparent that congruency implies congruency by addition; congruency
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by addition implies congruency by subtraction; and congruency or con-
gruency by addition or congruency by subtraction implies equivalence. We
state these facts, for convenience of reference, in the form of a theorem.

5.1.2 THeoreM. (1) If P Q, then P~ Q (+); (2) if P=Q (+), then
P2Q(-);B)ifP2QorPxQ(+)orP=Q(-), thenP~Q.

The idea of establishing the equivalence of two planar polygons by showing
that the polygons are either congruent by addition or congruent by sub-
traction is found in even ancient geometric studies. For example, in Propo-
sition 35 of Book I of Euclid’s Elements, we find essentially the following
proof of the fact that two parallelograms having the same base and equal
altitudes are equivalent to one another. Calling the two parallelograms P
and Q we clearly have, in the case of Figure 5.1a, P~ Q (+), and, in the

Figure 5.1a Figure 5.1b

case of Figure 5.1b, P + T =~ Q + T (+), whence P =~ Q (—). There are many
proofs of the Pythagorean Theorem illustrating the same procedures. For
example, H. Perigal, in 1873, gave the dissection proof of the Pythagorean
Theorem that is indicated in Figure 5.1c. Here the sum of the two squares

¢ b
2
a a ¢
1

Figure 5.1c 3 b
a |
(4 |

1 ' 5

ic 2
1
1

b a

on the legs a and b of the right triangle is cut into three pieces which, by
rearrangement, can be formed into the square on the hypotenuse c. A dis-
section proof of the Pythagorean Theorem which uses the idea of congruency
by subtraction rather than congruency by addition is indicated in Figure 5.1d.

5.1 Preliminaries
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This is a very old dissection proof of the famous theorem and might well
date back to Pythagorean times.

Figure 5.1d

It is obvious that both congruency by addition and congruency by sub-
traction are reflexive and symmetric relations.* That each of these relations
is also transitivet is not so obvious; we accordingly supply proofs of these
two facts.

5.1.3 THEOREM. IfP=R (+) and R~ Q (+4), then P~ Q (+4).

We are given (see suggestive Figure S.1e)

P=YP,R= }an,,P,_R Gi=1,...,n),
1 1
Q=;Q,-,R=;R G=1,..., m.

Figure 5.1e

0

Now let (R; Rj) denote the common part(s) of R; and R; when the two
dissections of R are superimposed on one another. Then we may dissect
P; into pieces congruent to

* That is, for any polygon or polyhedron P we have P >~ P (+) and P ~ P (-), and
for any two polygons or polyhedra P and Q we have that P ~ Q (+) implies Q >~ P
(+)and P ~ Q (—) implies Q =~ P (-).

T Congruency by addition is transitive if, for any three polygons or polyhedra P, R, Q
such that P ~ R(+)and R ~ Q (+), we have P >~ Q (+). A similar definition holds
for congruency by subtraction.
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(RiR), j=1,...,m,
and we may dissect Q; into pieces congruent to
(R;R), i=1,...,n

Therefore both P and Q can be dissected into pieces congruent to

(R;R)), i=1,...,mn, j=1,...,m.
That is,

P=Q(+)
514 THeOREM. IfP=R (=) and R=Q (-), then P=Q (-).
We are given (see suggestive Figure 5.1f)

P+YU=R+YW,(+), U=z=Ww,
Q+YV;=R+Y Wi(+), V,=W;.

\
————\
—
/A;gégg
ya
N
']
1
T
]
e T
s

~
—
™
‘,,r"r
4”‘
2
]

=

Figure 5.1f ] Lm

B+H:=w

Now, in the superimposed figures for R, let S denote the sum of all those

parts of 3° W; which are not parts of 3> W, and let T denote the sum of all
those parts of 3 W; which are not parts of 3> W;. Then

P+Y U +S=R+Y W,+S(+)
and

Q+YV;+ T=R+Y Wi+ T(+).
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But
R+Y W, +S=R+)Y Wi+T.

Hence, by Theorem 5.1.2 (1) and Theorem 5.1.3,
M P+Y U +S=Q+YV,+ T(+).
Also
YUA+SEYW;+S(+), YVi+T=) Wi+ T(+),
and

YW+ S=Y Wi+ T

Therefore, again by Theorem 5.1.2 (1) and Theorem 5.1.3,

2 YU +S=YV,+ T(+).
Relations (1) and (2) now guarantee that
P=Q(-).

Since each of the relations ““congruent by addition” and “ congruent by
subtraction” is reflexive, symmetric, and transitive, it follows that each of
the relations is an equivalence relation in the sense of abstract algebra.
The necessity of proving Theorem 5.1.3 seems first to have occurred to
W. H. Jackson in 1912.

PROBLEMS

1. Assuming the familiar formula for the area of a rectangle, give a congruency-
by-addition proof of the theorem: The area of a parallelogram is equal to the
product of one of its longer sides and the perpendicular distance between the
two longer sides.

2. Give a complete proof, by dissection methods, of Proposition I 35 of Euclid’s
Elements.

3. Give a congruency-by-addition proof of the Pythagorean Theorem suggested
by the dissection, given by H. E. Dudeney in 1917, pictured in Figure 5.1g.
(Note that the square on the shorter leg is not cut.)

N\
N

Figure 5.1g
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4. Give a congruency-by-subtraction proof of the Pythagorean Theorem suggested
by Figure 5.1h, said to have been devised by Leonardo da Vinci (1452-1519).

Figure 5.1h \

5.2 DISSECTION OF POLYGONS INTO TRIANGLES

In this section we consider some matters connected with the dissection of a
polygon into triangles. These matters become important in the program of
building up a rigorous theory of polygonal area. Curiously enough, much
of the material of this section cannot be extended to the analogous situations
in space.

5.2.1 DEFINITION. A vertex V of a polygon P will be called a projecting
vertex if it is possible to draw a line in the plane of P which separates vertex
V from all the other vertices of P.

5.2.2 THEOREM. A polygon possesses at least two projecting vertices.

Referring to Figure 5.2a, denote the consecutive vertices of polygon P

Figure 5.2a
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by Vi, ..., V, and let s be any line in the plane of P other than aline V; V;
(i #j). Let V;V;, produced if necessary, cut s in the (ordinary or ideal)
point 4;;. Let B, be the foot of the perpendicular from ¥V, on s. Choose
on s an ordinary point O, distinct from each 4;;, such that all the points
B, lie on a common side of O. Draw the rays OV,, k =1, ..., n. These rays
are distinct and all lie on one side of the perpendicular to s at O. It follows
that two of the rays, say OV, and OV, determine an angle within which all
the other rays lie. Vertices V, and V) are clearly projecting vertices of P.

We now prove a stronger theorem.

5.2.3 THEOREM. A polygon possesses at least three noncollinear projecting
vertices.

Let V,, V, be any two projecting vertices, guaranteed to exist by Theorem
5.2.2. There exist vertices of the polygon P on at least one side of the line
V,V,; call it the left side. Draw a line ¢ parallel to V,V,, on the left of
V.V, not on any line V;¥;, and such that there are vertices of P on the left
of t. Proceeding as in the proof of Theorem 5.2.2, using line 7 in place of
line s, we find projecting vertices of P on the right and left of ¢. But a pro-
jecting vertex on the left of ¢ is different from V,, V, and is not collinear

with V,, V.

5.2.4 THEOREM. Any polygon of n sides can be dissected into n — 2 triangles
whose vertices lie only at the vertices of the polygon.

The theorem is trivially true for n = 3.

Suppose the theorem is true for all polygons having less than k sides and
let P denote any k-sided polygon with consecutive vertices V5, ..., V,. By
Theorem 5.2.2, there exists a projecting vertex V, of P. Draw the segment
V,_1V.+1- Two cases arise, according as all other vertices of P lie outside
triangle V,_,V,V,, or at least one vertex of P lies within or on this triangle.

Figure 5.2b

Va+l

In the first case (see Figure 5.2b), segment V,_,V,,, dissects P into
triangle V,_,V, ¥V, and a polygon Q having k — 1 sides and whose vertices
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are vertices of P. By our supposition, Q@ can be dissected into (k — 1) — 2
triangles whose vertices lie only at the vertices of Q. It follows that P can
be dissected into 1 + [(k — 1) — 2] = k — 2 triangles whose vertices lie only
at the vertices of P.

Figure 5.2¢

Va+l

In the second case (see Figure 5.2c), there is a vertex V, inside or on
triangle V,_,V,V,,, such that no other vertex is inside or on triangle
D=V,V, V,.If h=a+ 2 we have polygons D and R=V,V, -V,
ifh#a+2wehave D, S=V, \Voys Vi, T=VyVyyy -+ V,. If R,
S, T have r, s, ¢t sides, then r=k — 1 and s+ t = k + 1. By supposition,
R, S, T can be dissected into r — 2, s — 2, t — 2 triangles with vertices only
at those of R, S, T respectively. It follows that P can be dissected into
r—=2+1=k—2o0r (s—2)+(t—2)+ 1=k — 2 triangles with vertices
only at those of P.

Thus, in either case, it follows, from our supposition, that the theorem
is true for any polygon having k sides.

The theorem is then true, by mathematical induction, for a polygon
having any number of sides.

5.2.5 COROLLARY. The sum of the interior angles of any polygon of n
sides is equal to n — 2 straight angles.

This is an immediate consequence of Theorem 5.2.4. (It should be noted
that the customary proofs found in elementary geometry texts fail to hold
if the polygon is nonconvex.)

5.2.6 THEOREM. A convex polygon* can be dissected into triangles having
vertices only at the vertices of the polygon and also all sharing a common
vertex.

Take any vertex of the polygon and connect it with each of the remaining

* A polygon is convex if it lies entirely on one side of each of its side lines.

5.2 Dissection of Polygons into Triangles
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vertices. Since the polygon is convex, these joins all lie within the polygon,
and we have a dissection of the desired kind.

5.2.7 DerNITIONS. Dissecting a triangle into two others by drawing a
cevian line is called a cevian operation. A dissection of a triangle into triangles
by a finite number of cevian operations applied to the given triangle or any
resulting subtriangle is called a cevian dissection of the original triangle.

The following theorem is quite apparent.
5.2.8 THEOREM. A dissection of a triangle into subtriangles in which the
interior and at least one side, exclusive of the endpoints of that side, of the
given triangle are free of vertices of subtriangles is a cevian dissection of the

given triangle.

5.2.9 THEOREM. Any dissection of a triangle into subtriangles can, by
additional cuts if necessary, be converted into a cevian dissection.

Figure 5.2d ;%

Let the given triangle T (see Figure 5.2d) be dissected into subtriangles
T, . From a vertex A of T draw cevian lines of T through all the vertices of
the subtriangles 7,. These cevian lines dissect T into certain subtriangles
T,, each of which is further broken up by the original dissection into sub-
triangles and, perhaps, subquadrilaterals. If in each of the subquadrilaterals
we draw a diagonal, then each subtriangle T, is dissected into further sub-
triangles T,,. By Theorem 5.2.8, the dissection of each subtriangle T, into
the subtriangles T, is cevian. It now follows that the dissection of T into
the subtriangles T, is cevian.

5.2.10 THEOREM. The additional cuts made in Theorem 5.2.9 effect a
cevian dissection of each subtriangle T, .

Consider a subtriangle 7,. Among the cevian lines of 7 emanating from
vertex A, there is always a definite one to be found which either coincides
with a side of T, or which divides T, into two subtriangles. In the first
case, the side in question remains free of vertices of subtriangles T,,. In the
second case, the segment of the cevian line contained within 7} is a side of
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the two triangles arising from the division, and this side certainly remains
free from further vertices of subtriangles T,,. We may now apply Theorem
5.2.8.

PROBLEMS

1. Give an alternative proof of Theorem 5.2.2 by considering a line s not parallel
to any V, ¥, and lying entirely to the left of the polygon P. Now move s con-
tinuously to the right, always keeping it parallel to its original position.

2. Show how the customary proofs of Corollary 5.2.5 found in elementary geometry
texts may fail to hold if the polygon is not convex.

3. Give a definition of a projecting vertex of a polyhedron P.

4. Prove that a polyhedron possesses at least two projecting vertices.

5.3 THE FUNDAMENTAL THEOREM OF POLYGONAL
DISSECTION

We now develop the theorem that largely accounts for the great number of
polygonal dissection puzzles. Some preliminary theorems will be established
first.

5.3.1 THEOREM. Any triangle is congruent by addition to the equivalent
rectangle having for length a longest side of the triangle.*

A
Figure 5.3a

3

The dissection is apparent from Figure 5.3a.

5.3.2 THEOREM. Any rectangle is congruent by addition to the equivalent
square.

Let the lengths of the sides of the rectangle be a and b, a = b. We shall
consider three cases.

Case 1. a = b. The rectangle is congruent to the square.

Case 2. b <a £4b. Let s = (ab)'/? be the side of the square equivalent
to the rectangle. Place the square, AEFH, on the rectangle, ABCD, as
shown in Figure 5.3b. Draw ED to cut BC in R and HF in K. Let BC cut

* A longest side of a triangle is any side which is not shorter than any other side.
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B R G C
Figure 5.3b
K
A m D

HF in G. From the similar triangles KDH and EDA we have HK/AE =
HD/AD, or

HK = (AE)(HD)/AD = s(a — s)|a=s — s*|a= s — b.

But, by hypothesis, 4b = a. Therefore 4b*> = ab = s?, or 2b = s, whence
s — b £b. That is, K lies on the segment HG, and we have

AEFK = ARCD, AEBR = AKHD.

Case 3. a > 4b. Keep halving the base of the rectangle and doubling the
altitude until an equivalent rectangle is obtained which satisfies case 1 or
case 2. This new rectangle is clearly congruent by addition to the original
rectangle. Hence, by Theorem 5.1.3, the equivalent square is congruent by
addition to the original rectangle.

5.3.3 THEOREM. Any two squares are jointly congruent by addition to the
square equivalent to their sum.

To prove this theorem is equivalent to giving a congruency-by-addition
proof of the Pythagorean Theorem; this we have already indicated by
Perigal’s dissection in Figure 5.1c.

5.3.4 THEOREM. Any finite number of squares are jointly congruent by
addition to the square equivalent to their sum.

Let the given squares be S;, ..., S, and let S;5, Si23, -.-> S123...n
denote the squares equivalent to S; +S,, S;2+ S35, ..., Si23 ... (w-1)+
S, respectively. Then, by Theorem 5.3.3, S|, + S, = S, (+), S;2 + S5 &
Si23 (), -+, S123 ... n-1y+ Sn = Si23 .. .4 (+). It follows, by Theorem
5.1.3, that

Si+8S,+ -+ 85, 2S5, +S;3+ - +85,(+)
=S+ S+ + 8, (+)

=823, .. (+).

5.3.6 THEOREM. Any polygon is congruent by addition to the equivalent
square.
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Let P be the polygon. Now, by Theorem 5.2.4, we can dissect P into
triangles T, ..., T,. That is

0 P=Ti+ - +T,.

By Theorem 5.3.1, there exist rectangles R, ..., R, such that

) T, = R;(+), i=1,..., k.
By Theorem 5.3.2, there exist squares S, ..., S; such that

)} R, = S;(+), i=1,..., k.

Let S be the square such that S ~ S, + - - - + S;. From (1), (2), (3) we have

P2y Ti(+), YTi=YRi(+), TR==YSi(+)
and by Theorem 5.3.4 we have Y} S; =~ S (+). Therefore, by Theorem 5.1.3,
P> S(+).

5.3.6 THE FUNDAMENTAL THEOREM OF POLYGONAL DISSECTION. Any two
equivalent polygons are congruent by addition, and the dissection may be
accomplished with Euclidean tools.

Let P and Q be the polygons and let S be the square such that S ~ P~ Q.
Then, by Theorem 5.3.5, P~ S(+) and Q =~ S (+). Hence, by Theorem
513, P2 Q(+).

That the dissection may be performed with Euclidean tools follows from
the fact that with these tools we may decompose a polygon into triangles,
construct for each triangle the corresponding rectangle of Theorem 5.3.1,
next the corresponding square of Theorem 5.3.2, and then successively
combine the squares as in Theorem 5.3.3.

5.3.7 THEOREM. If two polygons are congruent by subtraction, then they
are congruent by addition.

For if P~ Q (-), then P ~ Q. Hence, by Theorem 5.3.6, P = Q (+).

The theorems of this section can be easily extended to more general
polygons than those we have considered. Thus, by a simple device, we may
allow our polygons to have “holes” in them, or to be in more than one
piece. The device (see Figure 5.3c) is to convert such extended polygons
into essentially those of the type already considered by drawing appropriate
cut lines. Thus any polygonal line lying in the interior of a polygon con-
taining a “hole” and connecting the boundary of the “hole” with the
boundary of the surrounding polygon will convert the figure into a polygon
of the kind already considered if certain points and lines are counted twice
as vertices and edges. Similarly, an exterior polygonal line connecting the
boundaries of two pieces joins the two pieces into essentially a polygon of
the type already considered.

It might be interesting to close this section by observing an application

5.3 The Fundamental Theorem of Polygonal Dissection
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Figure 5.3c
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of the foregoing theory to a specific problem. If we successively apply the
dissections of Theorems 5.3.1 and 5.3.2 to the problem of cutting up an
equilateral triangle into pieces which can be reassembled to form a square,
we obtain the five-piece dissection pictured in Figure 5.3d. In Section 5.8
a four-piece solution of this problem is given.

3

3

Figure 5.3d

PROBLEMS

Dissection puzzles are generally quite difficult and require considerable ingenuity
on the part of the solver. Problems 1 through 17 are selected from the Problem
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Department of The American Mathematical Monthly, and a reader may find the
solutions to the problems at the indicated references. Problems 18 through 26 are
selected from H. E. Dudeney’s Amusements in Mathematics (New York: Dover
Publications, Inc., 1958); solutions appear in Dudeney’s book on the indicated pages.

1.

10.

A newspaper gave this problem: Cut a regular six-pointed star into the fewest
number of pieces which will fit together and make a square. The newspaper
gave a solution in seven pieces. First cut off two opposite points of the star.
Divide each into two parts, and fit to the remaining portion of the star so as to
make a rectangle. Find the mean proportional between the length and breadth
of this rectangle; this is the side of the required square. Using this dimension
on the two long sides of the rectangle, divide the latter into three pieces, which
make the square. Total seven pieces.

(a) Exhibit the newspaper dissection.

(b) Obtain a five-piece solution. (Problem 2799, Apr. 1921.)

. Cut two equilateral triangles of any relative proportions into not more than

five pieces which can be assembled to form a single equilateral triangle. (Problem
3048, Mar. 1930, and Problem E 1210, Nov. 1956.)

. Cut a 1 x 2 rectangle into three pieces which will fit into a Maltese cross.

(Problem 3142, Aug.-Sept. 1926.)

. Divide a triangle by two straight lines into three parts, which when properly

arranged shall form a parallelogram whose angles are of given magnitudes.
(Problem 3244, Feb. 1928.)

. A rectangular board has the length / (with the grain) and the width w (across

the grain). From it a square table top is to be made with the grain running all
one way. The board may be sawed both parallel and perpendicular to its
length; but the table top may have joints only with the grain, and not across
the grain. What is the largest table top that can be so made? (Problem E 80,
Aug.-Sept. 1934).

. From an arbitrary point within a triangle, draw three lines to the sides of the

triangle which shall trisect its area. (Problem E 199, Nov. 1936.)

. (a) Dissect a regular hexagon by straight cuts into 6 pieces which can be

reassembled to form an equilateral triangle. (b) Does there exist a five-piece
solution? (Problem E 400, Aug.-Sept. 1940.)

. (@) Given n = 6, show that it is possible to fit together » isosceles right triangles,

all of different sizes, so as to make a single isosceles right triangle. (b) Can the
problem be solved for » = 57 (c) Can a right isosceles triangle be dissected
into a finite number of right isosceles triangles, no two having a common
side? (Problem E 476, Mar. 1942.)

. Given a regular polygon of n sides, n > 4, design a quadrilateral, Q, such that:

(1) it shall be possible to fit 2n of the Q’s to the polygon to form a new regular
polygon of n sides, and (2) it shall be possible to fit 2n additional Q’s to the new
polygon to form a still larger third regular polygon of n sides. (Problem E 541,
June-July 1943.)

Give two equal regular dodecagons. Show how to dissect one of them into
twelve congruent pieces which can be fitted to the other to form another larger
regular dodecagon. (Problem E 721, Jan. 1947.)

5.3 The Fundamental Theorem of Polygonal Dissection
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Show that any given triangle can be dissected by straight cuts into four pieces
which can be arranged to form two triangles similar to the given triangle.
(Problem E 922, Feb. 1951.)

Dissect a regular pentagon, by straight cuts, into six pieces which can be put
together to form an equilateral triangle. (Problem E 972, Feb. 1952.)

Draw a straight line which will bisect both the area and the perimeter of a given
quadrilateral. (Problem E 992, June-July 1952 and Jan. 1953.)

Given n equal unit squares, dissect each of these in exactly the same way with
straight cuts into p(n) parts such that the n p(n) pieces may be assembled to
form a square of edge n'/2. (Problem E 1010, Dec. 1952.)

Find six-piece dissections of a regular dodecagon into a square and into a
Greek cross. (Problem E 1240, May 1957.)

Dissect a regular five-pointed star into no more than eight pieces which can be
reassembled, without turning over any of the pieces, to form a square. (Problem
E 1309, Nov. 1958.)

The dissection of a unit square into one $ X 1and two } X % rectangular pieces
shows that it is possible to dissect the unit square into three polygonal pieces
each having diameter d = \/ 65/8. Prove that the unit square cannot be dissected
into three polygonal pieces all of which have diameters less than d. (Problem
E 1311, Dec. 1958.)

Dissect a Greek cross into four congruent pieces that can be reassembled to
form a square. (p. 29.)

Dissect a square into four pieces that can be reassembled to form:

(a) two Greek crosses of different sizes,

(b) two Greek crosses of the same size. (p. 30.)

Dissect a right isosceles triangle into four pieces that can be reassembled to
form a Greek cross. (p. 32.)

Dissect a Greek cross into five pieces that will form two separate squares,
one of which shall contain half the area of one of the arms of the cross. (p. 34.)
Dissect a Greek cross into five pieces that will form two equal Greek crosses.
(Problem 143, p. 168.)

Dissect a Greek cross into six pieces that will form an equilateral triangle.
(Problem 144, p. 169.)

Cut out of paper a Greek cross; then so fold it that with a single straight cut of
the scissors, the four pieces produced will form a square. (Problem 145, p. 169.)
Dissect a 1 X 5 rectangle into four pieces which can be reassembled to form a
square. (Problem 153, p. 172.)

Dissect a regular pentagon into six pieces that can be reassembled to form a
square. (Problem 155, p. 172.)

Let P and Q (not necessarily polygons) be two equivalent planar areas such
that for each of P and Q all the curved boundary arcs fall into pairs of congruent
portions differing only as to the side on which the interior of the figure lies.
Show that P can be dissected into pieces which may be rearranged to form Q.
Show that in the dissection guaranteed by the fundamental theorem of polygonal
dissection no piece is turned over.
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54 LENNES POLYHEDRA AND CAUCHY'S THEOREM

In this and the next two sections we consider some matters connected with
the dissection of (solid) polyhedra into subpolyhedra. We first prove the
existence of polyhedra which cannot be dissected into tetrahedra having
their vertices only at the vertices of the polyhedron. This interesting fact
was first published in 1911 by N. J. Lennes, who constructed a polyhedron
having the property that the join of any two vertices not the endpoints of
a common edge lies either wholly or partly outside the polyhedron; it is
obvious that such a polyhedron cannot be dissected into tetrahedra in the
desired fashion.

5.4.1 DEFINITION. A polyhedron which cannot be dissected into tetra-
hedra having their vertices only at the vertices of the polyhedron will be
called a Lennes polyhedron.

The polyhedron constructed by Lennes possessed seven vertices. In 1928,
E. Schonhardt gave a simpler example of a Lennes polyhedron having only
six vertices, and he proved that there is no Lennes polyhedron with less
than six vertices. In 1948, F. Bagemihl showed the existence of Lennes
polyhedra having any number of vertices not less than six. We shall here
establish the existence of Lennes polyhedra by describing Schonhardt’s
example of 1928.

5.4.2 THEOREM. Lennes polyhedra exist.

Let ABC be an equilateral triangle with unit sides, and let A’B’C’ be the
triangle obtained from 4BC by first rotating ABC, in its plane, about its
center through 30° in the direction ABC, and then translating it one unit
in the direction perpendicular to the plane 4BC. Consider the polyhedron
P consisting of (see Figure 5.4a):

Al

Figure 5.4a

A C
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the 6 vertices: 4, B, C; A', B', C’;
the 12 edges: AB, BC, CA; A'B’, B'C’, C'A’; AA’, BB', CC’'; AB’,
BC', CA';
the 8 triangular faces: ABC, A'B'C’; AA'C, CC'B, BB'A; AA'B,
BB'C’, CC'A’.
The only joins of pairs of vertices which are not the endpoints of a common
edge are AC’, CB’, BA', and these are clearly wholly outside of P. It follows
that P is a Lennes polyhedron.

In contrast to Theorem 5.4.2 we have the following theorem.

5.4.3 CAUCHY’S THEOREM. Every convex polyhedron* can be dissected into
tetrahedra having their vertices only at the vertices of the polyhedron and also
all sharing a common vertex.

Consider the faces of a convex polyhedron P which do not contain a
particular vertex 4. Each of these faces can, by Theorem 5.2.4, be dissected
into triangles having their vertices only at vertices of P. Now form the tetra-
hedra having these triangles as bases and A as opposite vertex. Since P is
convex, these tetrahedra all lie within P, and we have P dissected in the
desired manner.

Theorem 5.4.3 now enables us to prove the following fundamental
theorem.

5.4.4 THEOREM. Every polyhedron can be dissected into tetrahedra.

Let py, ..., p, be the face planes of a polyhedron P. Then p,, ..., p,
divide space into a set of convex regions, a finite number of which make
up P. The theorem now follows from Theorem 5.4.3.

PROBLEMS

1. Figure 5.4b gives a pattern for constructing a Lennes polyhedron of the type
first discovered by Lennes. Reproduce Figure 5.4b on a convenient scale, cut it
out, and bend the paper along the inner lines upwards or downwards according
as these lines are full or broken. All flaps for gluing the surface together are to
be bent upwards. The side of the paper upon which the pattern is drawn will
end up inside of the model. The resulting polyhedron has a plane of symmetry.

2. Draw a pattern leading to a Lennes polyhedron of the Schonhardt type.

3. In Figure 5.4a, connect 4 and A’ with a circular arc of radius so large that the
open arc is on the same side of plane CA’C’ as 4 and on the same side of
plane BAB’ as A’, and choose k distinct points D, D,, ..., Dy, in this order,
on the open arc. Consider the polyhedron P consisting of:

* A polyhedron is convex if it lies entirely on one side of each of its face planes.
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Figure 5.4b

the k + 6 vertices: A, B, C, A’, B’, C’, Dy, ..., Dy;
the 3k + 12 edges: AB, BC, CA; A’'B’, B'C’, C’'A’; BB’, CC’; AB’, BC’,
CA’; ADy, DD, , ..., Dy_1Dy, D A’; CD\,CD,, ..., CDy_1, CDy;
B,Dl, B’Dz, P Ble_l, B’Dk;
the 2k + 8 triangular faces: ABC, A'B'C’; BC'B’, CBC’, AB’'B, A'CC’;
CAD,, CD,D,, CD;D;,..., CDy_,Dy, CD.A’; B’AD,, B'D,D,,
B'D;Ds, ..., BDi_ 1Dy, BDA'.
Show that P is a Lennes polyhedron. (This is Bagemihl’s example of a Lennes
polyhedron having k + 6 vertices. See The American Mathematical Monthly,
August-September 1948, pp. 411-413.)
4. Give a dissection proof of the theorem: An oblique prism is equivalent to a right
prism whose base is equal to a right section of the oblique prism, and whose
altitude is equal to a lateral edge of the oblique prism.

5.5 DEHN'S THEOREM

We next establish a theorem concerning the dihedral angles of any two
polyhedra which are congruent by addition or by subtraction; the proof
of the theorem will be elementary but somewhat long.

5.5.1 THEOREM. If P and Q are polyhedra such that P>~ Q (+) or P=Q
(=), and if P and Q have dihedral angles o, . . ., o, and B, ..., B, respectively,
then there exist positive integers p;, 4;, P> P’» 4, Q" Such that

Z;,Pi“i +(p+2p)n= Zl:q,'ﬁi +(q + 29")m.

Case |. P~ Q (+).

5.5 Dehn’s Theorem
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We have

P=P1+P2+"'+Pk,
0=0,+0,+ "+,
Pngi’ i=1,...,k.

Consider an edge of a subpolyhedron of P. The vertices of other sub-
polyhedra of P perhaps divide this edge into intervals. Each of these intervals
(or lacking such, the edge itself) will be known as an g-interval of the edge.
Thus the edges of all the subpolyhedra of P are divided into g-intervals,
and every a-interval belongs to edges of one or more subpolyhedra of P.

Now concentrate on some particular g-interval and let ep, denote the
edge of one subpolyhedron P; of P to which it belongs. Mark this a-interval
on the corresponding edge ey, of the corresponding subpolyhedron Q; of Q,
and temporarily designate the marked interval by a;. Now a; may be further
divided by vertices of other subpolyhedra of Q. This division of a;, when
transferred to the original a-interval of P, will be known as the division of
that ag-interval into c-intervals belonging to the edge ep,. The original
a-interval will thus be divided into sets of c-intervals, a set arising from each
subpolyhedron of P on an edge of which the a-interval is to be found. We
suppose all the a-intervals of P to be divided in this manner into their sets
of c-intervals.

Let us designate as b-intervals of Q those intervals on the edges of the
subpolyhedra of Q which are analogous to the a-intervals of P. In finding
the sets of c-intervals of the a-intervals of P, as outlined in the preceding
paragraph, the b-intervals of Q have been divided into analogous sets which
we shall refer to as sets of d-intervals. It is important to notice that to any
particular c-interval of P belonging, say, to edge ep,, there is a corresponding
equal d-interval of Q belonging to the corresponding edge of e,,, and con-
versely. Moreover, in the final division of the a and b-intervals, corresponding
¢ and d-intervals are divided in the same way into the same number of parts.

We now assign weights and arguments to our intervals. The weight of an
interval (a, b, ¢, or d) will be the number of parts into which it is finally
divided. The argument of a ¢ or d-interval will be the measure of the dihedral
angle of the subpolyhedral edge to which it belongs. The argument of an
a-interval will be = if it lies in the face of P or lies inside P but in a face of
some P;, 2 if it lies inside P but not in a face of some P;, or a, if it lies on
that edge of P whose dihedral angle is a, . Thus the argument of an g-interval
is the sum of the dihedral angles of the subpolyhedra along that a-interval.
The argument of a b-interval is similarly defined with reference to Q.

If an a-interval of weight w and argument ¢ be divided in several ways
by c-intervals with weights

D 2 (3
wi, w®, wid, L.

1 2 3
WD, W, W, .,
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and arguments
1 2 3
i, 1, 19, ...

1 2 3
10, 19,10, ..,

we have, by the definitions given above,
t(ll = t(2) = t(3) —
1 1 1 RN )

1 =1P =P = ..

*

o . ey

and
Zw(li)=zw(2i)= Np——
and
P+ + =1
Therefore
Y wPtP + Y wded 4 - -
— t(ll)zw(li) + tél) Z w(2i) + .-
— w(t(ll) + t£1)+ . )
= wt.
Hence

) Y owt=3 wt,

where Y. and ¥, are sums over all c-intervals of P and a-intervals of P. Let
Di1s - - -5 Dus P, P’ be the sums of the weights of the a-intervals with arguments
oy, ..., 0,, 7, 27 respectively. Then (1) becomes

Y wt=pa, + - +p,a, + (p + 2p")m.
c
Similarly treating Q we have
YW= Gifyt o+ G B+ (@ + 20T,
But
Y owt=Y wt,
c d
and p;, q;, p, g, P’, q' are positive integers. Hence the theorem for case 1.

Case 2. P~ Q (—).
We have

P+P1+"’+Pk;Q+Q1+"’+Qk(+),
where

Pngl’ j=1,...,k.
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Let the dihedral angles of P; (and Q)) be a;,..., ®;,. Then we have,
by case 1,

n a, ax
;Pi“i + ;Pu“u +0+ lekiaki"' (p+2p)n

~Ms

ay a,
q:B: + ;‘11;'“1."" R ;‘]ki“ki+(‘1+2‘]')n-

But p;; = g;;, since either one is equal to the total number of parts of that
edge of P; whose dihedral angle is a;;. Hence the theorem for case 2.

Theorem 5.5.1 gives us a necessary condition for two polyhedra to be
congruent by addition or by subtraction. It follows that if we can produce
two equivalent polyhedra which do not satisfy the condition of Theorem
5.5.1, then the two polyhedra cannot be congruent either by addition or
by subtraction, and the analogue in space of the fundamental theorem of
planar dissection does not hold. We shall show that a regular tetrahedron
and an equivalent cube do not satisfy the condition of Theorem 5.5.1. In
order to do this we need the following purely arithmetical fact, which we
shall establish with the aid of a little trigonometry.

5.5.2 THEOREM. If 0 = arc cos 4, then there do not exist integers r and s
such that r0 = sm.

Suppose there are integers r and s such that
@ rf = sm,
where, without loss of generality, we may assume r and s to be relatively
prime. Consider the binomial expansion
iAW .
(cos O +isin ) =Y ( )l” cos” ™" 6 sin" 6.

n=0\N
Taking the imaginary parts of both members, and remembering (1), we
find*

0=sinrf = (;) cos" ! @sin 6 — (;) cos’ 30sin30+....

Substituting cos 8 =4, sin 0 =\/§/3, we find

0= (\/§/3'){r - (;)8 + (;)82 .y }

Therefore the quantity in braces must vanish, and r must be even (divisible
by 8 in fact). Since r and s were chosen as relatively prime, s must be odd.
Thus cos(rf/2) = cos(sn/2) = 0. But

r/2

2 .
(cos 8 + i sin )% =} (’fl )i" cos”?7" 6 sin" 6.

n=0

* By De Moivre’s theorem, (cos 8 + i sin 8)" = cos rf + isin ro.
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Taking the real parts of both members we have
0 = cos(rf/2)

2 2
= cos”? 6 — (ré ) cos”’*7% @ sin? 0 + (ri ) cos”’2 4 @sin* 0 — ---

Substituting cos 0 =1, sin 6 =\/ 8/3, we find

1 (r/22)8 + (rf‘2)82 o

3r/ 2

1 + even number
3r/2

But this is impossible since the last numerator is odd and hence cannot
vanish. Therefore the original assumption (1) is untenable, and the theorem
is proved.

5.5.3 DEHN’s THEOREM (1902). If P and Q are equivalent polyhedra, it
does not necessarily follow that P~ Q (+) or P= Q (-).

For consider a regular tetrahedron T and an equivalent cube C. Suppose
T=~C (+) or T C (). Then the condition of Theorem 5.5.1 applies.
But the dihedral angles of a regular tetrahedron are all equal to 6= arc
cos 1, and the dihedral angles of a cube are all equal to 7/2. Theorem 5.5.1
then states that

6 12
¢)) ;pi 0+ (p+2p)m= ; g/n/2) + (¢ + 2¢")m.

Doubling both sides of (1) and doing some transposing we finally have a
relation of the form

rd = sm,

where r and s are integers. But such a relation is impossible by Theorem
5.5.2. Hence the theorem.

PROBLEMS

1. Prove that the dihedral angles of a regular tetrahedron are all equal to arc cos 3.

2. Prove that a frustum of a triangular pyramid is-equivalent to the sum of three
triangular pyramids whose common altitude is the altitude of the frustum and
whose bases are the lower base, the upper base, and the mean proportional
between the two bases of the frustum.

3. Prove: (a) A truncated triangular prism is equivalent to the sum of three triangular
pyramids whose common base is the base of the prism and whose vertices are
the three vertices of the inclined section.

5.5 Dehn’s Theorem
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(b) The volume of a truncated right triangular prism is equal to the product of
its base and one-third the sum of its lateral edges.

(c) The volume of any truncated triangular prism is equal to the product of its
right section and one-third the sum of its lateral edges.

4. How may the total surface of a sphere be divided into the largest possible
number of congruent pieces, if each side of each piece is an arc of a great circle
less than a quadrant? (See Problem E 5, The American Mathematical Monthly,
Feb. 1933.)

5. (a) Can any sealed rectangular envelope, after a single straight cut, be folded
into two congruent tetrahedra? Will the position of the cut affect the size of the
tetrahedra?

(b) How should the cut be made to make the total number of folds and unfolds
a minimum?

(c) What should be the relative dimensions of the envelope in order that the
tetrahedra be regular? (See Problem E 841, The American Mathematical Monthly,
June-July, 1949.)

6. Inthe February 1957 issue of Scientific American the following problem appeared:
“A carpenter, working with a buzz saw, wishes to cut a wooden cube, three
inches on a side, into 27 one-inch cubes. He can do this easily by making six
cuts through the cube, keeping the pieces together in the cube shape. Can he
reduce the number of necessary cuts by rearranging the pieces after each cut?”
Generalize this to find the number of cuts necessary to dissect an n X n X n
cube into n® one-inch cubes. (See Problem E 1279, The American Mathematical
Monthly, March 1958.)

5.6 CONGRUENCY (T) AND SUSS’ THEOREM

So far we have considered whether two equivalent polyhedra can be dissected
into subpolyhedra which are congruent in pairs, and we have found that in
general they cannot. We now examine the question whether they can be
dissected into corresponding tetrahedra such that in each pair of corres-
ponding tetrahedra we have a face of one equivalent to a face of the other
and the altitudes on these faces equal. This matter was first investigated by
W. Siiss in 1920.

5.6.1 NOTATION AND DEFINITIONS

(a) If two tetrahedra T, and T, are such that a face of one is equivalent
to a face of the other, and the altitudes on these faces are equal, we say
that T, and T, are congruent (T) and we write

T, = T, (T).

(b) If polyhedron P can be dissected into tetrahedra T,,..., T, and
polyhedron Q into tetrahedra T7j, ..., T,, where

T, =T;(T), i=1,...,n,
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we say that P and Q are congruent (T +) and we write

P~ Q(T+).
(c) If there exist polyhedra R, S, Py, ..., P,, Qy, - .., Q, such that
R=P+P + -+ P,
S=0+0,+ " +0,,
P, = 0,(T+), i=1,...,n,
R~ S (T+),

then we say that P and Q are congruent (T—) and we write
P~ Q(T-).

Thus P and Q are congruent (7—) if we can adjoin to P and Q pieces which
are congruent (T+) so that the results are congruent (T+). We also say
P=Q(T-)if

P=Z::ll’;,Q=;"1Q.-,Pi;Q,-(T—)fori=1,_,,,n,

The following theorem is apparent from the preceding definitions, and
the next one is almost apparent.

5.6.2 THEOREM. Let P and Q be polyhedra. (1) IfP = Q, thenP =~ Q (T +);
@ ifP=Q (T+), then P=Q (T-).

5.6.3 THEorReM. If Ty, T,, T, are three tetrahedra such that T, =T,
(T) and T, =T, (T), then T, =T, (T-).

For we have Ty + T, = T, + T3 (T+).
5.6.4 THEoOReM. If T, and T, are any two equivalent tetrahedra, then
T, =T, (T-).

Let the vertices of T, be a,, a,, a,, a, and those of T, be by, b,, b;, b,.

Case 1. aja,a; ~ b,b, by.
In this case the altitudes of T, and T, through a, and b, are equal and
T, =T, (T), whence, of course, T, = T, (T-).

Case 2. a,a,a; > b, b, b,.

Take b (see Figure 5.6a) on b, b, produced such that b}b, b; ~ a,a,a;.
Through b, pass a plane parallel to bib,b; to cut b,b, in b,. Set T, =
bib,byby. Then T, =Ty, + T,,, Ty = T3, + T5,, where

Tyy =T33 =bibyb3bly, Top =byb3byby, Ts, =b1b)b3by.

Since b,b} is parallel to bib,, we have b, b, b, ~ b1byb,, and T,, = T,,
(T). 1t follows that T, = T (T+), or T, ~ T,. Therefore T, ~ T,, and,
since face a,a,a; of T, is equivalent to face bib, b5 of T, we can pass a
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Figure 5.6a }
by

by
plane through edge a; a, which dissects 7, into subtetrahedra 7,, and T,
where Ty, = T3, (T) and T,, = T3, (T). We now have

T,,=T5 (T) and T,, =T, (T),
T\, =T5 (T) and T,,=T;, (T),

whence (by Theorem 5.6.3)
T\ =T, (T-)and Ty, = T,, (T-).
It follows that T, = T, (T-).

5.6.5 SuUss’ THEOREM (1920). If P and Q are any two equivalent polyhedra,
then P~ Q (T-).

By Theorem 5.4.4, we have
P=YT, ©Q=3Tj
j=

where the T; and the T are tetrahedra. Consider a tetrahedron T~ P ~ Q,
and let e (see Figure 5.6b) denote some particular edge of 7. There exists

Figure 5.6b

a set of planes through e which dissect 7 into adjacent tetrahedra S, ...,
S, such that S; ~ T;, and a second set of planes through e which dissect T’
into adjacent tetrahedra Sy, ..., S, such that S}~ T;. Each tetrahedron
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S; is possibly subdivided by the second set of planes into a set of subtetra-
hedra S;;, and each tetrahedron S; is possibly subdivided by the first set
of planes into a set of subtetrahedra S;. Now divide each T; (by planes
through an edge of 7)) into subtctrahedra ;; €quivalent to the S;;, and
divide each T} (by planes through an edge of T)) into subtetrahedra Tj;
equivalent to the S7;. But the S;; are the S}; rearranged. It follows that the Ti i
are equivalent to the ;in some arrangemcnt whence (by Theorem 5.6.4)

Z T, Z (T—

That is, P~ Q (T-).

It is now apparent that the whole difficulty in constructing a theory of
polyhedral volume lies in the consideration of tetrahedra which are con-
gruent (7). Such tetrahedra are not in general congruent either by addition
or by subtraction, and two such tetrahedra can be proven equivalent only
by introducing infinitesimals in connection with some sort of integration
process. This state of affairs is reflected in Book XII of Euclid’s Elements
and in the American high school texts on solid geometry. On the other hand,
infinitesimals are not needed in the construction of a theory of polygonal
area.

PROBLEMS

1. Show that there are tetrahedra Ty, T, Ts such that T, =~ T5 (T), T, =~ Ts (T),
but not Tl jad T: (T).

2. Prove that any two equivalent polyhedra can be dissected into tetrahedra which
are equivalent in pairs.

3. If P and Q are two equivalent polyhedra, show that there exists a polyhedron
R such that P~ R (T+) and Q ~ R(T+), and that, moreover, the same
dissection of R can serve for both congruences.

4, If P, Q, R are three polyhedra and P~ R (T-) and Q =~ R (T-), show that
P~ Q(T-).

5. Look up the proof, in a high school text of solid geometry, that two tetrahedra
which are congruent (7') are equivalent.

6. Assuming (1) two tetrahedra which are congruent (7) are equivalent, and (2)
the volume of a prism is the product of its base and its altitude, prove, by

dissection methods, that the volume of a tetrahedron is one-third the product
of its base and its altitude.

5.7 CONGRUENCY BY DECOMPOSITION*

An outstanding characteristic of much of twentieth-century mathematics is its
pronounced tendency toward generalization. Many concepts and many
* See L. M. Blumenthal, “A paradox, a paradox, a most ingenious paradox,” The American

Mathematical Monthly, vol. 47 (June-July 1940), pp. 346-353. Here also appears a dis-
cussion of the part played by the axiom of choice in the paradoxes of congruence theory.
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theorems of mathematics have been refined and generalized to a surprising
degree. Such geometrical notions as those of curve, surface, space, parallel-
ism, dimension, distance, area and volume, to name only a few, have under-
gone remarkable generalization and abstraction. From one point of view
this is excellent, for it is good to know the extreme limits to which a theorem
or a concept can be stretched, and there is an aesthetically pleasing and very
practical economy of effort in developing an abstract theory which can
cover hosts of specific situations. This tendency toward abstraction and
generalization in geometry will become very apparent in the second volume
of this work. In this section we illustrate the modern generalizing tendency
of mathematics by briefly considering the extension of the idea of congruency
by addition so as to embrace not just polygons and polyhedra but perfectly
arbitrary sets of points. The section will be largely descriptive since so many
of the proofs would require a level of mathematical development and so-
phistication that we are not assuming in this book. The terminology and
notation of elementary set theory will be employed. We commence by
formulating a few definitions.

5.7.1 DEFINITIONS AND NOTATION

(a) Two sets of points S and T (on a line, in a plane, or in space) are
said to be congruent, and we write S = T, if there exists an isometry which
makes one set coincide with the other.

(b) Two sets of points S and T are said to be congruent by finite decom-
position, and we write S = T (fd), if

S=us,;, S;nS;=0fori#j,

T=vuT,; T;nT;=0fori#}j,
SigTi (i=1,...,n).

That is, S and T are unions of a finite number » of disjoint subsets which
are congruent in pairs.

(c) Two sets of points S and T are said to be congruent by denumerable
decomposition, and we write S = T (dd), if

S=usS,, S;nS; =0 fori#j,

T=vuT;, T;nT;=0fori#j,
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5.7.2 Point sets congruent to a proper part of themselves. In the sense
that congruency has been used in connection with polygons and polyhedra,
no polygon or polyhedron is congruent to a proper part of itself. In contrast
to this, it is easy to exhibit a point set which, according to Definition 5.7.1 (a),
is congruent to a proper part of itself. Consider, for example, the set S,
of all points on a given horizontal line m and lying to the right of a selected
point 4 on m (see Figure 5.7a), and the set .S, of all points on m lying to

! |
T t

Figure 5.7a P 2

the right of a selected point B on m which is to the right of point 4. Clearly
S, is a proper part of S;. But S, = S,, since S; can be made to coincide
with S, by subjecting it to the translation T(4B). It is easy to construct
planar and spatial analogues of this example.

But the set S, in the above example is an unbounded set; that is, there
does not exist any sphere completely containing set S, in its interior. One
might think that surely there is no bounded point set which is congruent
to a proper part of itself. It is true that there are no bounded linear points
sets which are congruent to a proper part of themselves, but there do exist
bounded planar point sets of this sort. Consider, for example, the set S,
consisting of the points having polar coordinates (1, n"), where n =0, 1, . ..
and n" denotes n radians. These points (see Figure 5.7b) lie on the unit

Figure 5.7b

circle with center at the origin O of coordinates and having 1 radian of arc
between points corresponding to consecutive values of n. Since 7 is irrational,
the points (1, i") and (1,j7) of S, are distinct if i # j. Clearly set S, is a bounded
point set. Let S, be the point set consisting of all the points of S, except
the point (1, 0"). Then S, is a proper part of S,. But §; &~ S,, since S, can
be made to coincide with S, by subjecting it to the rotation R(O, 17).

5.7.3 wvon Neumann’s decomposition. Although a bounded linear set
cannot be congruent to a proper part of itself, there is an unexpected property
possessed by a line segment (which, of course, is a bounded linear set).

5.7 Congruency by Decomposition
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Whether an end point 4 (or B) of a line segment AB is to be considered as
belonging or not belonging to the segment will be indicated by using a
bracket or parenthesis, respectively, about the letter 4 (or B). Using this
notation we then have the four related segments [4B], [4B), (AB], (AB).
The first segment is called a closed segment, the next two are said to be
half-closed (or half-open), and the last segment is called an open segment.
Now it is easy to decompose a half-closed segment [4B) into a finite number
of pairwise disjoint subsets S, S5, ..., S, which are all congruent to one
another (merely divide the segment AB into n equal parts by the points C,,
C,,..., C,_, and take S,=[4AC)), S,=[C,C)),..., S,=[C,_,B)).
J. von Neumann showed, in 1928, that it is also possible to decompose the
segment [AB) into a denumerably infinite number of pairwise disjoint sub-
sets S, S,, ... which are all congruent to one another. Indeed, this can be
done for a closed, half-closed, or open segment. Of course the subsets S;
are no longer themselves segments.

5.7.4 Noncongruent segments which are congruent by denumerable decom-
position. Of the four segments [4B], [AB), (AB], (AB), considered as
sets of points, it is clear that only the two half-closed ones are congruent
to one another. Nevertheless, we can prove that all four segments are con-
gruent to one another by denumerable decomposition. To accomplish this
let M, be the midpoint of AB, M, the midpoint of M,B, M, the midpoint
of M, B, and so on, and let E denote the set of all points of [4B] with the
exception of points 4, B, M, M,, M5, . ... Then [AB] is the union of the
pairwise disjoint sets E, 4, B, M,, M, , . . .; [AB) is the union of the pairwise
disjoint sets E, A, My, M,, M5, ...; (AB] is the union of the pairwise dis-
joint sets E, B, M,, M,, M, .. .; (AB) is the union of the pairwise disjoint
sets E, M,, M,, My, M,, ....Since ExXE, A~A, BxM,, M,=M,,
M, = M,, ..., it follows that [AB] = [AB) (dd). Similarly we can show that
any two of the four segments are congruent to one another by denumerable
decomposition.

5.7.5 The Sierpiniski-Mazurkiewicz paradox. In Article 5.7.2 we saw how
certain sets E can be decomposed into two nonempty disjoint subsets E;
and E, such that E =~ E,. Beyond the fact that E, is not empty (thus making
E, a proper part of E), this second part of E was disregarded. The Polish
mathematician W. Sierpiniski proposed the question: Does there exist a set
E which may be decomposed into two nonempty disjoint subsets E,, E,
such that E, ~ E, =~ E? The question was answered in the affirmative in
1914 by S. Mazurkiewicz, another Polish mathematician, in the following
way:

Let E consist of a point O and all points obtainable from O by a finite
number of rotations R(O, 17) and translations T(4B), where AB is a fixed
unit segment. A point P of E will belong to subset E, of E if and only if
the final transformation in the sequence of transformations yielding the
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point P is a rotation R(O, 17); otherwise P will belong to subset E, of E.
Clearly E=E, UE, and E, and E, are nonempty. It can be shown that
also E,nE, =0. But Ex E,, for E can be made to coincide with E, by
subjecting it to the rotation R(O, 1"). Also E > E,, for E can be made to
coincide with E, by subjecting it to the translation T(4B). It follows that
E ~FE,~E

The affirmative answer to Sierpinski’s question is so contrary to the
dictates of common sense that the word “‘ paradox > has been attached to it.

5.7.6 The Hausdorff paradox. If the Sierpinski-Mazurkiewicz paradox
taxes one’s credulity, even more so does a discovery made by F. Hausdorff
and published by him in 1914 in his famous book on set theory. Hausdorff’s
paradox, as slightly improved in 1924 by S. Banach and A. Tarski, may be
stated as follows:

The surface S of a sphere may be decomposed into three pairwise disjoint
and congruent sets, each of which is congruent to the union of the other two.

Banach has shown that a similar situation cannot exist for a planar set S.

5.7.7 The Banach-Tarski paradox. The most astonishing paradox (in the
sense of being a true statement that surely seems false) concerning the
notion of congruence was obtained in 1924 by Banach and Tarski. The
paradox may be stated as follows:

In any Euclidean space of dimension n > 2, any two arbitrary sets containing
interior points are congruent by finite decomposition.

Without explaining the meanings of all the technical terms in this state-
ment, we shall merely illustrate by an example. Consider two solid spheres,
P and S, where P is the size of a pea and S is the size of the sun. Then,
according to the statement, it is possible to decompose the set of points
making up P into a finite number of pairwise disjoint subsets such that,
by ordinary rigid motions (translations and rotations), these subsets may
be made to fill out the entire solid sphere S. That is, in the notation of set
theory, we have subsets P,, ..., P, of P and subsets S, ..., S, of S such
that

P=P,UP,u:---UP,, P,nP;=0 for i # j,
S=S,uS,u---us,, S;nS;=0 for i # j,

and P; is congruent to S; for each i. Surely such a state of affairs must
appear astonishing to even the most sophisticated mathematician.

It is to be noted that the Banach-Tarski paradox holds only in Euclidean
spaces of dimension greater than 2. It can be shown that two polygons are
congruent by finite decomposition if and only if they have the same area.
On the other hand, any two subsets (bounded or not) of any Euclidean
space are congruent by denumerable decomposition, provided they contain
interior points.

5.7 Congruency by Decomposition
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A decomposition has been found of a solid sphere into nine pairwise
disjoint sets such that the first five of these sets, or the last four of them, can,
after appropriate rotations, completely fill out the solid sphere.

PROBLEMS

1. Construct planar and spatial analogues of the linear example illustrated in
Figure 5.7a.

2. If i and j are distinct nonnegative integers, show that the points with polar
coordinates (1, i") and (1, j) are distinct.

3. Do you think that [AB] or (4B) can be decomposed into two disjoint congruent
subsets?

4. Show that for every positive integer n, a plane can be decomposed into n congruent
connected parts. (See Problem E 1515, The American Mathematical Monthly,
Jan. 1963.)

5. Two sets S and T are said to be equivalent if there exists a one-to-one corre-
spondence between the elements of .S and the elements of 7. Show that the segments
[AB], [AB), (AB], (AB), considered as sets of points, are equivalent to one
another.

6. In 5.7.5, choose a Cartesian frame of reference with origin at O and positive x
axis parallel to AB, and represent a point (x, y) in the plane by the complex
number z = x + iy.
(a) Show that R(O,I") carries a point z into the point ze', and that T(4B)
carries a point z into the point z + 1.
(b) Show that if z is a point obtained from O by a finite number of rotations
R(O, I") and translations T(4B), then z can be expressed as a polynomial in e
having integral coefficients.
(c) Show that the assumption that E; N E, # @ implies that ¢' satisfies a
polynomial equation with integral coefficients.
(d) Show that E1 N Ez = 0

7. Are two tetrahedra of different volumes congruent by finite decomposition?

5.8 A BRIEF BUDGET OF DISSECTION CURIOSITIES

We conclude the chapter with a small collection of planar and spatial dis-
section curiosities. It is not to be regarded as a proper part of our general
textual development, but as a browsing ground for any interested reader.
The examples, while illustrating some of the fascination of this odd geo-
metrical art, may appeal to some reader’s recreational instincts. A number
of unsolved problems are stated.

5.8.1 Dudeney’s dissection of an equilateral triangle into a square. Henry
Ernest Dudeney (1857-1931), unquestionably England’s foremost inventor
of puzzles, was spectacularly adept in the art of geometrical dissection. His
best-known discovery in this field is his four-piece dissection of an equilateral
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triangle into a square. A five-piece solution of this problem (see the end of
Section 5.3) had been known for some time, and it was generally believed
that this could not be bettered. Dudeney’s discovery was made about 1902,
and has since become famous in dissection literature. Figure 5.8a explains

Figure 5.8a

the dissection; a proof of its correctness is left to the reader. The segments
AD, DB, BE, EC, FG are all equal to half the side of the triangle; EF is
equal to the side of the equivalent square; DJ and GK are each perpendicular
to EF.

If the four pieces 1, 2, 3, 4 are successively hinged to one another at the
points D, E, G, then, holding piece 1 fixed and swinging the connected set
of pieces 4-3-2 counterclockwise, the equilateral triangle is neatly carried
into the square. A set of four connected tables has been built based upon
this fact; swinging the tables in one direction causes the tops to fit together
into a single equilateral triangular table, and swinging them in the other
direction causes the tops to fit together into a single square table.

L. V. Lyons has used Dudeney’s construction to obtain a dissection of
the plane into a mosaic of interlocking equilateral triangles and squares,
as pictured in Figure 5.8b.

5.8.2 Dissection of a regular octagon into a square. Dudeney bettered
several long-established records in polygonal dissection. He was the first,
for example, to dissect a regular pentagon into a square with only six pieces
(see Problem 26, section 5.3), and to dissect a given square into three equal
squares with only six pieces. Very curious along this line is a statement made
by Alice Dudeney (Mrs. H. E. Dudeney) in the preface to Puzzles and Curious
Problems, by H. E. Dudeney, published in 1932, after the author had died.
The book was reprinted in 1936, 1941, and 1948, revised by James Travers.
The statement is: “It is remarkable that the regular octagon can be cut
into as few as four pieces to form a corresponding square.” The implication
is that such a four-piece dissection was another of Dudeney’s triumphs.
But no one has since been able to find such a solution. A beautiful five-piece
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Figure 5.8b

dissection, illustrated in Figure 5.8c, was published by Travers in 1933. It
is strange that Travers, who revised the book in question, made no correction
of or comment on Alice Dudeney’s unverifiable statement. It is difficult to
believe that a four-piece solution of the problem is possible.

A

Figure 5.8¢c D B’

5.8.3 The minimal dissection problem. The minimal dissection problem
is that of determining the least number of pieces needed to dissect a given
polygon into another given equivalent polygon. Only very small inroads
have been made into this problem. W. B. Carver and Alfred Tarski showed
that if » is the minimum number of pieces needed to dissect a rectangle of
dimensions ¢ and b, a = b, into a square, then
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ngE(\/x2 - 1) +2,

where x = (a/b)!’?, and E(y) means the least integer not less than y. This
result was improved upon when E. E. Moise showed that » < E(x) + 1 and
Tarski, in a later paper, showed that n = E(x). It follows, then, that n = E(x)
or E(x) + 1. In particular, the reader might like to try to answer the following
two questions:

(a) Is there a three-piece dissection of a 2 x 15 rectangle into a square?
(Here E(x) = 3.)

(b) Is there a five-piece dissection of a 3 x 64 rectangle into a square?
(Here E(x) =5.)

5.8.4 ‘““Squaring” the square. 1In 1925, Z. Mordn noted (see Figure 5.8d)

32
8 9
15
7 1
Figure 5.8d Z 10 135
18
14

that a 32 x 33 rectangle can be dissected into nine squares, no two of which
are equal. This raised the question of whether a square can be dissected
into a finite number of squares, no two of which are equal. It was felt that
this latter problem was impossible, but such turned out not to be the case.
The first published example of a square dissected into unequal squares
appeared in 1939; the dissection was given by R. Sprague of Berlin, and
contained 55 subsquares. In 1940, R. C. Brooks, C. A. B. Smith, A. H. Stone,
and W. T. Tutte, in a joint paper, published a dissection containing only
26 pieces. These men ingeniously established a connection between the
problem of dissection and certain properties of currents in electrical net-
works. In 1948, T. H. Willcocks published the 24-piece dissection of a
square into unequal squares pictured in Figure 5.8e, and this dissection is
today the record so far as least number of pieces is concerned.

5.8.56 Perfect dissections. A dissection is said to be perfect if all the pieces
are similar but unequal; the number of pieces is called the order of the
dissection. A dissection is called finite or infinite according as the order of
the dissection is finite or infinite. The problem of “squaring” the square
is that of finding a finite perfect dissection of a square into squares. A great
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deal of work has been done in recent years in connection with perfect dis-
sections. We here list some of the results found, and conclude with a couple
of questions that still remain unanswered.

(a) If a rectangle can be finitely dissected perfectly into squares, then the
sides of the rectangle are commensurable.

(b) If the sides of a rectangle are commensurable, then the rectangle can
in an infinity of ways be finitely dissected perfectly into squares.

(c) There is an infinite perfect dissection of a rectangle into squares.

(d) There is no perfect dissection of a rectangle into squares of order
less than 9, and exactly two of order 9. (Proved by H. Reichardt and
H. Toepken in 1940. One of the two possible dissections is pictured in
Figure 5.8d.)

(e) There is no finite perfect dissection of an equilateral triangle into
equilateral triangles. (Proved by W. T. Tutte in 1948.)

(f) There is no finite perfect dissection of a rectangular parallelepiped
into cubes.

There is a proof of this that is so pretty and simple that we sketch it here.
Suppose there is a finite perfect dissection of a rectangular parallelepiped
P into cubes. Then the bottom face of P is a “squared” rectangle. Within
this ““squared ™ rectangle there is a smallest square, which clearly cannot be
along an edge of the rectangle. This means that the smallest cube A resting
on the bottom base of P is surrounded by larger cubes. On top of cube A4,
smaller cubes must rest, forming a “squared” square on the top face of 4.
Within this *“squared” square there is a smallest square, giving rise to a
cube B that is the smallest cube resting on the top of cube A. Continuing
the argument, there must be a smallest cube C resting on top of cube B,
and so on ad infinitum. But this is impossible.
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A perfect dissection of a rectangle into squares is said to be simple if the
dissection does not contain within it a perfect dissection of a smaller rec-
tangle. Note that the perfect dissection illustrated in Figure 5.8d is simple,
whereas that illustrated in Figure 5.8e is not simple.

(g) The least known order to-date of a simple perfect dissection of a
square into squares is 37. (Found by T. H. Willcocks in 1959.)

(h) There is a simple perfect dissection (of order 69) of a square into
squares in which no four subsquares share a common vertex and no square
other than the four corner squares is bisected by a diagonal of the complete
figure. (Found by W. T. Tutte.)

(i) What is the smallest possible order for a perfect dissection of a square
into squares ?

(j) Does there exist a simple perfect dissection of a 1 x 2 rectangle into
squares?

5.8.6 Dissecting a checkerboard. The problem of enumerating the
number of ways in which an n x n checkerboard can be cut, with cuts made
only along edges of squares of the board, into two congruent connected
parts, seems not to be easy. A solution is known for a 6 x 6 board.

5.8.7 Dissection into dominoes. We call a 1 x 2 rectangle a domino. One
can ask a number of interesting questions, such as:

(a) In how many ways can a 2 x n rectangle be dissected into dominoes?
(See Problem E 1470, The American Mathematical Monthly, Jan. 1962.)

(b) In how many ways can 2k squares be cut from an 8 x 8 checkerboard
so that the remaining part can be dissected into dominoes?

5.8.8 Regular tessellations. A planar regular tessellation is a dissection
of the Euclidean plane into regular polygons. If the polygons are all con-
gruent, then they must have 3, 4, or 6 sides. More interesting is the situation
where two or more sizes of the same kind of polygon are admitted, or where
two or more different kinds of polygons are admitted. The literature on
regular tessellations is very large, and the subject becomes particularly
interesting in the Lobachevskian non-Euclidean plane, where one can form
tessellations of congruent regular n-gons with p of them about each vertex
for any p such that 1/n+ 1/p < 1/2. Solid regular tessellations have also
been extensively discussed.

5.8.9 The translation restriction. H. Lindgren, of Australia, has considered
dissections wherein one polygon is cut into pieces which can, by translations
alone, be rearranged to form a second polygon. Such a dissection may be
called a translation dissection. Examples of Lindgren’s achievements along
this line are:

(a) A 4-piece translation dissection of a quadrilateral into any equivalent
quadrilateral having the same angles.

5.8 A Brief Budget of Dissection Curiosities
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(b) A 10-piece translation dissection of a regular nine-sided polygon into
an equilateral triangle.

5.8.10 Parallelogramic dissection of a parpolygon. A parpolygon is a
polygon of an even number of sides in which opposite sides are equal and
parallel. It is a nice geometric application of mathematical induction to
prove that: Every parpolygon of 2n sides can be dissected into n(n — 1)/2
parallelograms.

The theorem is certainly true for n = 2. Suppose it is true for n = k, and
let P,., be any parpolygon of 2(k + 1) sides. Then P,,, can be dissected
(as indicated in Figure 5.8f) into k parallelograms and a parpolygon P, of

Figure 5.8f

2k sides. By our supposition, P, can be dissected into k(k — 1)/2 parallelo-
grams. It follows that P, can be dissected into

k + k(k — 1)/2 = (k + 1)k/2

parallelograms. The theorem now follows by mathematical induction.

It is interesting to note that if the parpolygon is equilateral, then the
parallelograms become rhombuses of the same length side. A regular 2n-gon
is an example of an equilateral parpolygon.

5.8.11 The Fibonacci numbers and a dissection puzzle. There is a familiar
geometrical paradox, pictured in Figure 5.8g, where a square, subdivided
like a checkerboard into 64 small unit squares, is cut into four pieces which
can apparently be reassembled to form a rectangle containing 65 unit

Figure 5.8g
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squares. The explanation of where the additional unit square comes from
lies in the fact that the edges of the four pieces which seem to lie along a
diagonal of the rectangle really do not do so, but form a very flat parallelogram
of exactly one square unit of area. A number of mathematicians, among them
Lewis Carroll of Alice in Wonderland fame, have considered the problem
of generalizing this paradox. A neat generalization is furnished by the so-
called Fibonacci numbers, defined by fi =f, =1, fiy1=fi.1 +/: (=2, 3,
...). It can be shown that

Sosr oy =F3+ (1),

whence a square of side f, can be dissected, as in Figure 5.8h, into four

I
fuea fu-2
1, Juct
Joea
To-t A1 B fuc
foer S Jacs 1,
Figure 5.8h

pieces which can be reassembled to almost form an f,_, x f,., rectangle.
If we take n = 6, we obtain the original dissection puzzle.

5.8.12 The law of cosines. Figure 5.8i indicates a simple proof, utilizing

Figure 5.8i

[>-]
RN

dissection notions, of the law of cosines:
¢t =a® + b? —2abcos C,

where a, b, ¢ are the sides of any triangle and C is the angle opposite side c.
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5.8.13 An equilateral triangle problem. Some geometrical problems can
be neatly solved with dissection methods. This is illustrated here, and in
the next two items. Consider the problem: Find the area of an equilateral
triangle if a point P within the triangle is at distances 3, 4, 5 from the three
vertices.

Referring to Figure 5.8j, cut the triangle into three pieces along the solid

Figure 5.8j

lines from P and then arrange these pieces around the triangle as indicated
to form a hexagon of twice the area of the triangle. Cut this hexagon along
the solid and dashed lines from P to form three equilateral triangles and
three right triangles, all of known sides. The desired area is now readily
computed to be

[/3(3% + 4% + 5%)/4 + 18])2.

5.8.14 An area problem. If A’, B’, C' (see Figure 5.8k,) are the first

Figure 5.8k,

trisection points of the sides BC, CA, AB of a given triangle 4ABC, show
that the cevians 44', BB’, CC' are the side lines of a triangle whose area is
one-seventh the area of the given triangle.

A very simple dissection proof is indicated in Figure 5.8k, .

5.8.15 Another area problem. The following problem appeared on the
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Figure 5.8k,

|

N

1958 Kiirschdk Prize Competition, an annual high school mathematics
contest held in Hungary: If in the convex hexagon ABCDEF every pair of
opposite sides are parallel, prove that triangles ACE and BDF have equal
areas.

Dissect the hexagon in two ways as indicated by the solid and the dashed
lines of Figure 5.81. In each dissection we see that the area of the hexagon

Figure 5.8l

is twice the area of one of the concerned triangles decreased by the area
of a little triangle whose sides are equal to the differences of the pairs of
opposite sides of the hexagon. The desired result is now evident.

5.8.16 Cutting the cheese. Two interesting related questions are: (1) Into
how many regions can n straight lines divide a plane? (2) Into how many
regions can n planes divide space? We shall prove that the answers to the
two questions are (n* + n + 2)/2 and (n® + 5n + 6)/6 respectively.

THEOREM. n straight lines can divide a plane into at most (n* + n + 2)/2
regions.

The theorem is clearly true for n = 1. Suppose it true for n =k, and
suppose we have k lines so drawn that the plane is divided into (k* + k + 2)/2
regions. Draw a (k + 1)st line not parallel to any of the k given lines and
not passing through a point of intersection of any pair of the k given lines.
Then this (k + 1)st line will cut into k + 1 regions, adding this many regions
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to the number we already have, and this is the best we can do. We now have

K*+k+2)2+(k+1)=(*+3k+4)2
=[k+1D*+k+1)+2)2

regions, and the theorem follows by mathematical induction.

THEOREM. n planes can divide space into at most (n® + 5n + 6)/6 regions.

The theorem is clearly true for n = 1. Suppose it true for n =k, and
suppose we have k planes so drawn that space is divided into (k* + 5k + 6)/6
regions. Draw a (k + 1)st plane not parallel to any of the k given planes,
not passing through the line of intersection of any two of the k given planes,
and not passing through a point of intersection of any three of the k given
planes. Then this (k + 1)st plane will be intersected by the k given planes
in k straight lines dividing the (k + 1)st plane into at most (k% + k + 2)/2
areas. For each of these areas, the (k + 1)st plane divides a region of space
already formed by the k given planes into two parts, and this increases the
total number of regions by at most (k? + k + 2)/2. But

(k* + 5k + 6)/6 + (K* + k +2)/2 =[(k + 1)* + 5(k + 1) + 6]/6,

and the theorem follows by mathematical induction.
It is interesting to note that:

1. n points can divide a line into 1 + n parts,

n
) parts,

2. n lines can divide a plane into 1 + n + (2

3. n planes can divide space into 1 + n + (;) + (;) parts.

It has been shown that n (m — 1)-spaces can divide an m-space into

ere ) )
" 2 3 m
m-dimensional regions.

5.8.17 Duplicating the cube. In Oct. 1932, W. F. Cheney, Jr., proposed
the problem of dissecting a 1 x 1 x 2 wooden block into as few polyhedral
pieces as possible which can be reassembled into a cube. In Feb. 1933,
W. R. Ransom offered an eight-piece solution. In Oct. 1935, a seven-piece
solution by A. H. Wheeler was published. All these references can be found
in the appropriate issues of The American Mathematical Monthly in con-
nection with Problem E 4. The seven-piece dissection of Wheeler makes a
splendid three-dimensional puzzle. Given the seven pieces, one is hard
pressed to assemble them into either the cube or the 1 x 1 x 2 block.

5.8.18 Cutting a cube into cubes. It is easy to cut a cube into 8 subcubes
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(by planes parallel to pairs of opposite faces and midway between them),
and it is quite apparent that it is impossible to cut a cube into only 2 sub-
cubes. For a given positive integer k, then, it may or may not be possible
to cut a cube into k subcubes. William Scott, in 1946, showed that a cube
can be cut into any k > 54 subcubes. It was also shown that a cube can be
cut into k subcubes where k is

1, 8, 15, 20, 22, 27, 29, 34, 36, 38, 39,
41, 43, 45, 46, 48, 49, 50, 51, 52, 53.

It was natural, then, to wonder if k = 54 is the largest number of subcubes
into which a cube cannot be cut. This question was still unanswered when
the fifth printing of the first edition of the present book appeared in 1968.
Reading this, and challenged by the question, Von Christian Thiel, of
Germany, attacked the problem and in 1969 managed to show that a cube
can be cut into 54 subcubes. The question now is: Is k = 47 the largest
number of subcubes into which a given cube cannot be cut? For a con-
sideration of the extension of this problem to n-dimensional space, see
Problem E 724, The American Mathematical Monthly, Jan. 1947.

5.8.19 A volume dissection. Leo Moser has shown that if each face of
a polyhedron has central symmetry, then the polyhedron can be dissected
into subpolyhedra which can be reassembled to form a cube. His proof may
be found in Problem E 860, The American Mathematical Monthly, Dec. 1949.

5.8.20 Passing a cube through a cube of the same size. A well-known and
entertaining problem is that of cutting a hole through a given solid cube
(the hole being completely surrounded by material of the cube) through
which a second cube of the same size as the given one can be passed. For a
solution to the problem see Problem E 888, The American Mathematical
Monthly, May 1950.

5.8.21 Ham sandwich problems. One of the most surprising dissection
theorems states that if 4, B, C are any three volumes in space, there exists
a plane which bisects all three volumes simultaneously. The theorem becomes
very striking when phrased in connection with a ham sandwich as follows:
It is possible by a planar cut to divide a ham sandwich into two parts so
that the parts contain equal amounts of bread, of butter, and of ham. The
two-dimensional version of the theorem is also true, namely, if 4 and B
are any two areas in the plane, there exists a straight line in the plane which
bisects A and B simultaneously. An allied theorem is: Given a single area
in the plane, there exists a pair of perpendicular lines in the plane which
divide the area into four equivalent parts. Proofs of these theorems require
a knowledge of limits and continuity, and will be taken up in a later chapter.
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PROBLEMS

1. Establish the correctness of Dudeney’s four-piece dissection of an equilateral
triangle into a square.

2. Using the Dudeney dissection, describe how a square can be cut into four pieces
by three straight cuts of equal length so that the pieces can be reassembled to
form an equilateral triangle.

3. Describe the Travers five-piece dissection of a regular octagon into a square.

4. Show how any of the three dissections of a regular octagon, given by H. Lindgren
and pictured in Figure 5.8m, lead to a four-piece dissection of a regular octagon
into a rectangle.

Figure 5.8m

5. (a) Show that E(y) = —[—y], where [z] is the “integral part of z.”

(b) Show that for a 2 X 15 rectangle E(x) = 3, and for a 3 X 64 rectangle
E(x) = 5.

6. Show that if a rectangle can be finitely dissected perfectly into squares in one
way, then it can be finitely dissected perfectly into squares in an infinity of
ways.

7. Assemble nine squares of sides 2, 5, 7, 9, 16, 25, 28, 33, 36 into a 61 X 69
rectangle.

8. Show that if two diagonally opposite corner squares of an 8 X 8 checkerboard
are removed, then the remaining part of the board cannot be dissected into
dominoes.

9. A very interesting problem of tessellations is to fill the plane with congruent
regular polygons.

(a) If we do not permit a vertex of one polygon to lie on a side of another,
show that the number of polygons at each vertex is given by 2 + 4/(n — 2),
and hence that we must have n = 3, 4, or 6. Construct illustrative tessellations.
(b) If we insist that a vertex of one polygon lie on a side of another, show that
the number of polygons clustered at such a vertex is given by 1 + 2/(n — 2),
whence we must have n = 3 or 4. Construct illustrative tessellations.

(c) Construct tessellations containing (1) two sizes of equilateral triangles,
the larger having a side twice that of the smaller, (2) two sizes of squares, the
larger having a side twice that of the smaller, (3) congruent equilateral triangles
and congruent regular dodecagons, (4) congruent equilateral triangles and
congruent regular hexagons, (5) congruent squares and congruent regular
octagons.

(d) Suppose we have a tessellation composed of regular polygons of three
different kinds at each vertex. If the three kinds of polygons have p, ¢, r sides,
respectively, show that
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1/p + 1/g + 1/r = 1/2.

One integral solution of this equation is p = 4, ¢ = 6, r = 12. Construct a
tessellation of the type under consideration and composed of congruent squares,
congruent regular hexagons, and congruent regular dodecagons.

10. Dissect a regular dodecagon into 15 rhombuses having the same length side.

11. If £, is the nth term of the Fibonacci sequence 1,1,2,3,...,x,y, x + »,...,
show that f, .1 fa-: = fi2 + (= D"

12. Draw Figure 5.8i for the case where (a) angle C is acute, (b) angle C is a right
angle.

13. Generalize Problem 5.8.13 to the situation where P is at distances a, b, ¢ from
the vertices of the equilateral triangle, where a* + b2 = c2.

14. (a) Dissect an obtuse triangle into the least number of acute triangles.
(b) Dissect an obtuse triangle into the least number of isosceles acute triangles.

15. Divide a circular disc into 22 pieces by 6 straight cuts.

16. (a) Show that if a cube can be cut into k subcubes, then it can be cut into
k + 7q subcubes, where g is any nonnegative integer.
(b) Assuming that a cube can be cut into 1, 20, 38, 39, 49, 51, 61 subcubes,
show that a cube can be cut into any number k£ > 54 subcubes.
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Projective Geometry

6.1 Perspectivities and Projectivities - 6.2 Further
Applications - 6.3 Proper Conics - 6.4 Applications
6.5 The Chasles-Steiner Definition of a Proper Conic
6.6 A Proper Conic as an Envelope of Lines

6.7 Reciprocation and the Principle of Duality

6.8 The Focus-Directrix Property - 6.9 Orthogonal
Projection

Consider, for a moment, the problem an artist faces in attempting to paint
a true picture of some object. As the artist looks at the object, rays of light
from the object enter his eye. If a transparent screen should be placed
between the artist’s eye and the object, these rays of light would intersect
the screen in a collection of points. It is this collection of points, which
may be called the image, or projection, of the object on the screen, that the
artist must draw on his paper or canvas if a viewer of the picture is to receive
the same impression of the form of the object as he would receive were he
to view the object itself. Since the artist’s paper or canvas is not a trans-
parent screen, the task of accurately drawing the desired projection presents
a real problem to the artist. In an effort to produce more realistic pictures,
many of the Renaissance artists and architects became deeply interested in
discovering the formal laws controlling the construction of the projections
of objects on a screen, and, in the fifteenth century, a number of these men
created the elements of an underlying geometrical theory of perspective.
The theory of perspective was considerably extended in the early seven-
teenth century by a small group of French mathematicians, the motivator
of whom was Gérard Desargues, an engineer and architect who was born
in Lyons in 1593 and who died in the same city about 1662. Influenced by
the growing needs of artists and architects for a deeper theory of perspective,



Desargues published, in Paris in 1639, a remarkably original treatise on the
conic sections which exploited the idea of projection. But this work was so
neglected by most other mathematicians of the time that it was soon for-
gotten and all copies of the publication disappeared. Two centuries later,
when the French geometer Michel Chasles (1793-1880) wrote a history of
geometry, there was no way to estimate the value of Desargues’ work. Six
years later, however, in 1845, Chasles happened upon a manuscript copy
of Desargues’ treatise, made by one of Desargues’ few followers, and since
that time the work has been recognized as one of the classics in the early
development of projective geometry.

There are several reasons for the initial neglect of Desargues’ little volume.
It was overshadowed by the more supple analytic geometry introduced by
Descartes two years earlier. Geometers were generally either developing this
new powerful tool or trying to apply infinitesimals to geometry. Also,
Desargues unfortunately adopted a style and a terminology that were so
eccentric that they beclouded his work and discouraged others from attempt-
ing properly to evaluate his accomplishments.

The reintroduction of projective considerations into geometry did not
occur until the late eighteenth century, when the great French geometer
Gaspard Monge (1746-1818) created his descriptive geometry. This subject,
which concerns a way of representing and analyzing three dimensional
objects by means of their projections on certain planes, had its origin in
the design of fortifications. Monge was a very inspiring teacher, and there
gathered about him a group of brilliant students of geometry, among whom
were L. N. Carnot (1753-1823), Charles J. Brianchon (1785-1864), and
Jean Victor Poncelet (1788-1867).

The real revival of projective geometry was launched by Poncelet. As a
Russian prisoner of war, taken during Napoleon’s retreat from Moscow,
and with no books at hand, Poncelet planned his great work on projective
geometry, which, after his release and return to France, he published in
Paris in 1822.* This work gave tremendous impetus to the study of the
subject and inaugurated the so-called ‘““great period” in the history of
projective geometry. There followed into the field a host of mathematicians,
among whom were Gergonne, Brianchon, Chasles, Pliicker, Steiner, Staudt,
Reye, and Cremona—great names in the history of geometry, and in the
history of projective geometry in particular.

The work of Desargues and of Poncelet, and their followers, led geometers
to classify geometric properties into two categories, the metric properties,
in which the measure of distances and of angles intervenes, and the descriptive

properties, in which only the relative positional connection of the geometric

elements with respect to one another is concerned. The Pythagorean Theo-
rem, that the square on the hypotenuse of a right triangle is equal to the sum
of the squares on the two legs, is a metric property. As an example of a

* Traité des propriétés projectives des figures.
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descriptive property we might mention the remarkable * mystic hexagram >
theorem of Blaise Pascal, which we have earlier considered for the case of
a circle and which was inspired by the work of Desargues: If a hexagon be
inscribed in a conic, then the points of intersection of the three pairs of opposite
sides are collinear, and, conversely, if the points of intersection of the three
pairs of opposite sides of a hexagon are collinear, then the hexagon is inscribed
in a conic.

The distinction between the two types of geometric properties, at least
in the case of plane figures, becomes clearer when viewed from the fact that
the descriptive properties are unaltered when the figure is subjected to a
projection, whereas the metric properties may no longer hold when the
figure is projected. Thus, under a projection from one plane to another, a
right triangle does not necessarily remain a right triangle, and so the Pythag-
orean relation does not necessarily hold for the projected figure; the
Pythagorean Theorem is a metric theorem. In the case of Pascal’s Theorem,
however, a hexagon inscribed in a conic projects into a hexagon inscribed
in a conic and collinear points project into collinear points, and hence the
theorem is preserved; Pascal’s Theorem is a descriptive theorem.

Many descriptive properties present themselves in the seeming form of
metric properties. For example we have seen (in Theorem 2.5.7) that the
cross ratio (4B,CD) of four points 4, B, C, D on a straight line is unaltered
when the line containing the four points is projected into another line and
the four points 4', B’, C’, D'. In other words, though the lengths of the
various corresponding segments on the two lines are not necessarily equal
to one another, nevertheless the two compound ratios

(A'C'|C'B)/(A'D'|D'B’)  and  (AC/CB)/(AD|/DB),
that is, the two cross ratios (4B,CD) and (4’B’,C’'D’), are equal in value,
and thus the cross ratio of four collinear points is a descriptive property
of those points.

The study of the descriptive properties of geometric figures is known as
projective geometry.

Projective geometry has grown into a vast and singularly beautifully
developed branch of geometry, and has become basic for many geometrical
studies. Some of its more elementary aspects will be examined in this chapter;
some of its deeper aspects will appear in subsequent chapters. A sharper
definition of the subject will be given later.

6.1 PERSPECTIVITIES AND PROJECTIVITIES

Let = and =’ (see Figure 6.1a) be two given fixed nonideal planes of extended
space, and let V" be a given fixed point not lying on either = or n’. Since the
space is extended, n and n’ are extended planes, and point ¥ may be either
an ordinary or an ideal point. Let P be any point, ordinary or ideal, of
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plane . Then line VP will intersect plane n’ in a unique ordinary or ideal
point P’ of #’. In this way the extended plane = is mapped onto the extended
plane 7’. Indeed, since distinct points of = have distinct images in n’, the
mapping is actually a transformation of the set of all points of the extended
plane = onto the set of all points of the extended plane n’. The points on
the line of intersection of planes = and =’ are invariant points of the trans-
formation.

6.1.1 DEerFINITIONs. A transformation such as described above is called
a perspectivity, or a perspective transformation, and the point V is called
the center of the perspectivity. If ¥ is an ordinary point of space, the per-
spectivity is called a central perspectivity; if V is an ideal point of space, the
perspectivity is called a parallel perspectivity. The line of intersection of ©
and 7’ is called the axis of perspectivity. The line in 7 (z") which maps into
the line at infinity in 7’ () is called the vanishing line of = (n'). The point in
which a line of 7 (n') meets the vanishing line of # (n’) is called the vanishing
point of the line.

A perspectivity or a product of two or more perspectivities is called a
projectivity, or a projective transformation. For example, a perspectivity of
center ¥ of plane © onto plane 7', followed by a perspectivity of center W
of plane 7’ onto plane ", is a projectivity of plane = onto plane n".

It is clear that the two planes n and 7’ of a perspectivity must be taken
as extended planes, since otherwise the correspondence between the points
of the two planes might not be one-to-one. It is for this reason that an
extended plane is often called a projective plane.

It is easily seen that a projectivity carries a straight line into a straight line.
Very useful is the following special situation.

6.1.2 THEOREM. If m is a given plane, 1 a given line in n, and V a given
point not on , then there exists a plane ©' such that the perspectivity of center
V carries line 1 of w into the line at infinity of n'.

Choose for n’ (see Figure 6.1b) any plane parallel to (but not coincident

6.1 Perspectivities and Projectivities
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Figure 6.1b

with) the plane determined by ¥ and /. Then it is clear that the line joining
V to any point P on / will be parallel to plane #’, that is, will meet n’ at
infinity.

6.1.3 DerINITION. The operation of selecting a suitable center of per-
spectivity ¥ and a plane ' so that a given line / of a given plane = shall be
mapped into the line at infinity of =’ is called projecting the given line to
infinity.

The operation of projecting a given line to infinity can often greatly
simplify the proof of a theorem. We give some examples; the reader should
note the application of the transform-solve-invert procedure. We first establish
one of the harmonic properties of a complete quadrangle.

6.1.4 THeOREM. Let PQRS (see Figure 6.1c,) be a complete quadrangle
and let PQ and SR intersect in A, PR and SQ intersect in B, PS and QR
intersect in C, AB and PS intersect in D. Then (PS,DC) = —1.

Project line AC to infinity. Then P'Q'R'S’ (see Figure 6.1c;) is a
parallelogram and D’ is the midpoint of P’S’. Since C’is at infinity, we
have (P'S’,D’'C') = —1. The theorem now follows.

A A
Q / / /’
o R
R
B B’ ¢
P D S C P D’ N
Figure 6.1c; Figure 6.1c,
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6.1.5 THEOREM. If the three lines UPP,, UQ;Q,, UR R, (see Figure
6.1d,) intersect the two lines OX, and OX, in P, Q,, Ry and P,, Q,, R,
respectively, then the points of intersection of Q;R, and Q,R,, R,P, and
R,P,, P,Q, and P, Q, are collinear on a line that passes through point O.

Figure 6.1d, Figure 6.1d,

Project line OU to infinity. The projected figure appears as in Figure
6.1d,, where P{P;, Q105, R R} are all parallel, and P{Q R} and P5Q% R}
are parallel. It is clear that the points of intersection of Q{R5 and Q) Rj,
R{P, and R, P, P;Q5 and P; Q] are collinear on a line parallel to lines
PiQ} R} and P; Q5 R (they lie on the line midway between lines P Q R} and
P5 Q% R3). It follows that the corresponding points in the original figure
are collinear on a line passing through point O.

6.1.6 DESARGUES’ TWO-TRIANGLE THEOREM. Copolar triangles in a plane
are coaxial, and conversely.

Let the two triangles (see Figure 6.1e) be 4,B,C, and 4, B, C,, and let
B,C, and B, C, intersect in L, C;A4, and C, A4, intersect in M, A,B; and
A, B, intersect in N.

Suppose A,4,, B;B,, C,C, are concurrent in a point O. Project line
MN to infinity. Then A} B] and A4} B; are parallel, and A}C] and 45 C; are
parallel. It follows that O'Bi/O'B; = O'A}/O'A, = O'C{/O'C;, whence
B{Ci and B C5 are also parallel. That is, the intersections of corresponding
sides of triangles A1B;Cj and A5 B; C5 are collinear (on the line at infinity).
It follows that the intersections of corresponding sides of triangles A,B,C,
and A4, B, C, are collinear. That is, copolar triangles in a plane are coaxial.

Now suppose L, M, N are collinear. Project line LMN to infinity. Then
the two triangles A1B{C{ and A B, C; have their corresponding sides
parallel, and hence are homothetic to one another, whence 414, B{B;,
C1Cj5 are concurrent in a point O'. It follows that 4,4,, BB,, C,C, are
concurrent in a point O. That is, coaxial triangles in a plane are copolar.

6.1 Perspectivities and Projectivities
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Figure 6.1e

6.1.7 THEOREM. There is a perspectivity that carries a given triangle ABC
and a given point G in its plane (but not on a side line of the triangle) into a
triangle A'B'C’ and its centroid G'.

Let AG, BG, CG (see Figure 6.1f) intersect the opposite sides BC, CA,
AB in points D, E, F. Then triangles DEF and ABC are copolar, and hence
also coaxial. That is, the points L, M, N of intersection of EF and BC,
FD and CA, DE and AB are collinear. By Theorem 6.1.4, (BC,DL) = —1.
Project line LMN to infinity. Then D’ is the midpoint of B’C’. Similarly E’
and F’ are the midpoints of C'A’ and A’'B’ respectively. It follows that G’
is the centroid of triangle 4’'B'C’.

Figure 6.1f

PROBLEMS

1. (a) Prove that a projectivity carries a straight line into a straight line.
(b) Prove that under a perspectivity a straight line and its image intersect each
other on the axis of perspectivity.
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2. (a) Prove that under a perspectivity the angle between the images m’ and »’
of any two lines m and n is equal to the angle which the vanishing points of m
and n subtend at the center V of perspectivity.

(b) Prove that under a perspectivity all angles whose sides have the same
vanishing points map into equal angles.

3. (a) Given a plane = containing a line / and two angles ABC and DEF, where
A, C, D, F are on [ in the order 4, D, C, F. Show that there exists a perspectivity
which projects / to infinity and angles ABC and DEF into angles of given sizes
o and B respectively.

(b) Must the segments AC and DF in part (a) separate each other?

4. Show that there exists a perspectivity which projects a given quadrilateral ABCD
into a square.

5. Prove that the cross ratio of a pencil of four distinct coplanar lines is preserved
by projection.

6. Show that in a perspectivity carrying a plane = into a nonparallel plane =’
there are in each plane exactly two points such that every angle at either of them
projects into an equal angle. (These points are called the isocenters of the
perspectivity.)

7. Show that in a perspectivity carrying a plane = into a nonparallel plane 7’
there is in each plane, besides the axis of perspectivity, a line whose segments
are projected into equal segments. (These lines are called the isolines of the
perspectivity.)

6.2 FURTHER APPLICATIONS

If AD, BE, CF are concurrent cevian lines for a triangle ABC, Ceva’s
Theorem states that

(BD)(CE)(AF) _
(DC)(EA)(FB)

The left member of this equation is a ratio of a product of some directed
segments to a product of some other directed segments, and this ratio of
products of directed segments has the two following interesting properties:

(1) If we replace BD by B x D, and similarly treat all other segments
appearing, and then regard the resulting expression as an algebraic one in
the letters B, D, etc., these letters can all be cancelled out.

(2) If we replace BD by a letter, say a, representing the line on which
the segment is found, and similarly treat all other segments appearing, and
then regard the resulting expression as an algebraic one in the letters a, etc.,
these letters can all be cancelled out.

6.2.1 DEFINITION. A ratio of a product of directed segments to another
product of directed segments, where all the segments lie in one plane, is called
an h-expression if it has the properties (1) and (2) described above.

6.2 Further Applications
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6.2.2 THEOREM. The value of an h-expression is invariant under any
projectivity.

It is sufficient to show that a given A-expression has a value which is
invariant under an arbitrary perspectivity. Let V' be the center of a per-
spectivity and let 4B be any one of the segments appearing in the A-expres-
sion. Let p denote the perpendicular distance from V to AB. Then

pAB = (VA)(VB) sin AVB,
since each side is twice the area of A VAB. It follows that
AB = [(VA)(VB) sin AVB]/p.

Replace each segment AB in the h-expression by [(VA)(VB)sin ABV]/p.
Since property (1) above holds, V4, VB, etc. cancel out; since property (2)
above holds, p, etc. cancel out. We are left with an expression containing
only the sines sin AVB, etc. Now, since <):AVB x A'VB', etc., the same
relation that holds among the sines sin AVB, etc. holds among the sines
sin A’ VB, etc. Introducing factors VA', VB', p’, etc., by reversmg the earlier
cancellations, leads to the same relation among segments A4’ 1'B’, etc. as was
given among segments AB, etc.

The reader will note that the procedure employed in the above proof is
essentially the way we proved, in Section 2.5, that the cross ratio of four
collinear points is invariant under a perspectivity.

6.2.3 Ceva’s THEOREM. If AD, BE, CF are concurrent cevian lines for a
triangle ABC, then
o (BD)YCE)AF) _

(DC)(EA)(FB)

The expression on the left of (1) is an h-expression, and is therefore (by
Theorem 6.2.2) invariant in value under projection. By Theorem 6.1.7, there
isa perspectmty which carries triangle ABC and the point G of concurrence
of the three cevian lines into a trlangle A’'B’'C’ and its centroid G’. Then

BD'|DC =CE|EA =A A'F'|[F'B’ =1, and clearly

(BD)CEYAF) _
(DC\EANFB)

The theorem now follows.

6.2.4 MENELAUS’ THEOREM. If D, E, F are collinear menelaus points on
the sides BC, CA, AB of a triangle ABC, then

O (BD)CE)XAF) _ _
(DC)(EA)(FB)
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The expression on the left of (1) is an A-expression, and is therefore (by
Theorem 6.2.2) invariant in_value under projection. Project line DEF to
infinity. Then B'D’'/D'C’' = C'E'[E'A’ = A'F'|[F'B’' = —1, and clearly

(B'D')(C'E'YAF) _ 1
(D'C'Y(E'A’)(F'B’) '

The theorem now follows.

We conclude the section by giving another projective proof of Desargues’
Two-Triangle Theorem and a proof of a theorem due to Pappus. The latter
theorem is a generalization of Theorem 6.1.5, and is an instance of a de-
scriptive theorem that was known to the ancient Greeks. In Chapter 8
we shall see that Pappus’ Theorem and Desargues’ Two-Triangle Theorem
are very important in a study of the foundations of projective geometry.

6.2.56 DESARGUES’ TWO-TRIANGLE THEOREM. Copolar triangles (in space
or in a plane) are coaxial, and conversely.

(a) Let the two triangles be ABC and A’'B’'C’ and suppose they lie in
different planes © and =n’ respectively (see Figure 6.2a). Also suppose AA4’,

Figure 6.2a

BB’, CC' are concurrent in a point O. Then BC and B’C’ are coplanar
and thus intersect in a point L. Similarly, CA and C’'A’ are coplanar and
thus intersect in a point M, and 4B and A’'B’ are coplanar and thus intersect
in a point N. The points L, M, N then lie in both planes = and =’, and hence
on the line of intersection of these two planes. That is, copolar triangles in
different planes are coaxial. The converse follows by reversing the above
argument.

(b) Now suppose the two planes = and =’ coincide, and (see Figure 6.2b)
that the points L, M, N of intersection of BC and B'C’, C4A and C'A’, AB
and A'B’ are collinear on a line / in n. Let n, be a plane distinct from 7 and
passing through /, let P be a point not on = or n,, and let PA’, PB’, PC’
cut n; in 4,, B, C,, respectively. Then B,, C,, B’, C’ are coplanar, as also

6.2 Further Applications
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Figure 6.2b

are Cy, A,, C', A" and 4, B,, A’, B’, and we see that BC, B'C’, B;C, meet
in L; CA, C'A’, C{A, meet in M; AB, A'B’, A, B, meet in N. Thus the two
triangles A,B,C, and ABC are coaxial and therefore, by part (a), are co-
polar. That is, 44,, BB,, CC, are concurrent in a point Q. Let QP cut =
in point O. Then A, A’, O all lie in the plane determined by PA4,4’ and
QA A. 1t follows that 44’ passes through O. Similarly, BB’ and CC’ pass
through O, and triangles ABC and A'B'C’' are copolar. The converse is
obtained by applying the above to triangles A4'M and BB’'L.

6.2.6 PAPPUS’ THEOREM. If the vertices 1,2, 3,4, 5, 6 of a hexagon 123456
lie alternately on a pair of lines, then the three intersections P, Q, R of the
opposite sides 23 and 56, 45 and 12, 61 and 34 of the hexagon are collinear
(see Figure 6.2c,).

2/

Figure 6.2¢c, Figure 6.2c-»
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Project line PQ to infinity and suppose the intersection O of lines 135
and 246 does not lie on PQ. Then 1’, 3, 5’ are collinear, 2’, 4, 6’ are collinear,
O’ is a finite point, 2’3’ is parallel to 5’6, and 4’5’ is parallel to 1'2’. We
must prove that 6’1’ is parallel to 3'4’. Now (see Figure 6.2c,), since 2’3’
is parallel to 5'6’ and 4’5’ is parallel to 1’2/,

0'6/0'2 = 0'5/0'3 and O'1'/0'S’' = 0'2'/|0'4..
It follows that 0'6'/0'l" = O'4/0'3’ and 61" is parallel to 3'4".

If O lies on PQ, then lines 1’3’5’ and 2’4’6’ are parallel. But then 1’5’ =

24 and 53’ = 6'2. It follows that 1’3’ = 6’4’ and 6'l’ is parallel to 3'4".

PROBLEMS

1. Lines VAA’, VBB’, VCC’ cut two lines OX, OY in A and A’, Band B’, C and C’
respectively. AB” and A’C intersect in P; A’B and AC’ intersect in Q. Prove that
line PQ passes through V.

2. Philippe de la Hire (1640-1718), a pupil of Desargues, invented the following
interesting mapping of a plane onto itself. Let @ and b be two given parallel
lines and O a given point in their plane. Let P be an arbitrary point of the plane
and through P draw a line cutting a in 4 and b in B. Then the image P’ of P
is taken as the intersection with PO of the parallel to A0 through B.

(a) Show that P’ is independent of the particular line PAB through P used to
determine it.

(b) Into what does line @ map?

(¢) Into what does line b map?

(d) Into what does a line parallel to lines @ and b map?

(e) Into what does a line through O parallel to lines @ and b map?

(f) Into what does the line at infinity map?

(g) Show that all straight lines map into straight lines.

(h) Where must we take the image of O?

(i) Generalize la Hire’s mapping to the situation where lines a and b need not
be parallel.

3. If the sides of a hexagon 123456 pass alternately through two fixed points P
and Q, prove that the three diagonals joining opposite pairs of vertices of the
hexagon are concurrent.

4. If P, Q, R are any three points on the sides BC, CA, AB respectively of a triangle
ABC, show that (BP/PCXCQ/QAXAR|RB)is invariant in value under projection.

5. In the complete quadrangle ABCD, a transversal cuts sides AB and CD in M
and M’, sides BC and AD in N and N’, and sides AC and BD in P and P’.
Show that

(MNYMN")/(MPYMP’) = (M’NYM’N")[(M’P)(M'P).

6.3 PROPER CONICS

We commence by informally stating a number of definitions which are very
likely already familiar to the reader.
A circular cone (see Figure 6.3a) is a surface generated by a straight line
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Figure 6.3a

il

which moves so that it always intersects a given circle ¢ and passes through
a fixed point ¥ not in the plane of the circle. The generating line, in each
of its positions, is called an element of the cone; the fixed point is called
the vertex of the cone. The vertex divides each element into two half-lines
and divides the cone into two rappes, each of which is generated by one of
the half-lines. If the line joining the vertex of the cone to the center of the
given circle is perpendicular to the plane of the circle, the cone is called a
right circular cone; otherwise it is called an obligue circular cone.

The curves called parabolas, ellipses, and hyperbolas were named by
Apollonius, and were investigated by him as certain planar sections of right
and oblique circular cones. Since these curves are intersections of circular
cones by planes, they are examples of conic sections, or more briefly, conics.
If the cutting plane does not pass through the vertex of the cone, the conic
is called a proper conic. A parabola is a proper conic whose plane of section
is parallel to one and only one element of the cone; an ellipse (including a
circle as a special case) is a proper conic whose plane of section cuts all the
elements of one nappe of the cone; a hyperbola is a proper conic whose
plane of section cuts into both nappes of the cone. Figure 6.3b shows a
right circular cone sectioned to yield a parabola p, and ellipse e, and a
hyperbola A.

In ordinary space, a parabola is clearly a one-piece nonclosed curve; an
ellipse is a one-piece closed curve; a hyperbola is a two-piece nonclosed
curve. In extended space, each curve is one-piece and closed.

Since a proper conic is a section of a circular cone, and the section does
not pass through the vertex of the cone, it follows that a proper conic is
the image of a circle under a perspectivity. Therefore any property of a
circle which is descriptive, that is, is unaltered by projection, can be trans-
ferred at once to the conic. In this way we obtain the following sequence
of theorems about proper conics.
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Figure 6.3b

6.3.1 THEOREM. A straight line in the plane of a proper conic cuts the
conic in two points, is tangent to the conic, or fails to cut the conic.

6.3.2 THEOREM. There is a unique tangent line to a proper conic at each
point on the conic.

6.3.3 THEOREM. A proper conic divides its plane, exclusive of the conic
itself, into two regions such that from any point in one of the regions two
lines can be drawn tangent to the conic, and from any point in the other region
no line can be drawn tangent to the conic.

6.3.4 DerFiNITIONS. The two regions mentioned in Theorem 6.3.3 are
called, respectively, the outside and the inside of the proper conic.

6.3.5 THEOREM. If a variable line through a given point P in the plane
of a proper conic c intersects the conic, the harmonic conjugates of the point
with respect to the intersections of the line and conic all lie on a straight line p.
(See Corollary 3.9.8.)

6.3.6 DeErFINITIONS. The straight line p of Theorem 6.3.5 is called the
polar of the point P for the conic ¢, and point P is called the pole of line p
for the conic c.

6.3.7 THEOREM. (1) The polar of a point for a proper conic intersects the
conic, is tangent to the conic at the point, or does not intersect the conic,
according as the point is outside, on, or inside the conic. (2) If point P is outside
a proper conic, then its polar for the conic passes through the points of contact
of the tangents to the conic from P. (See Theorem 3.9.2.)

6.3 Proper Conics
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6.3.8 THeorReM. (1) If, for a given proper conic, the polar of P passes
through Q, then the polar of Q passes through P. (2) If, for a given proper
conic, the pole of line p lies on line q, then the pole of q lies on p. (3) If, for
a given proper conic, P and Q are the poles of p and q, then the pole of line
PQ is the point of intersection of p and q. (See Theorem 3.9.3.)

6.3.9 DerFINITIONS. Two points such that each lies on the polar of the
other, for a given proper conic, are called conjugate points for the conic;
two lines such that each passes through the pole of the other, for a given
proper conic, are called conjugate lines for the conic.

6.3.10 THEOREM. For a given proper conic: (1) Each point of a line has
a conjugate point on that line. (2) Each line through a point has a conjugate
line through that point. (3) Of two distinct conjugate points on a line that
cuts the conic, one is inside and the other outside the conic. (4) Of two distinct
conjugate lines that intersect outside the conic, one cuts the conic and the
other does not. (5) Any point on the conic is conjugate to all the points on the
tangent to the conic at the point. (6) Any tangent to the conic is conjugate to
all the lines through its point of contact with the conic. (See Theorem 3.9.6.)

6.3.11 THEOREM. If, for a given proper conic, two conjugate points lie on
a line which intersects the conic, they are harmonically separated by the points
of intersection. (See Theorem 3.9.7.)

6.3.12 THEOREM. If, for a given proper conic, two conjugate lines intersect
outside the conic, they are harmonically separated by the tangents to the conic
from their point of intersection. (See Theorem 3.9.9.)

6.3.13 THEOREM. If A, B, C, D are four distinct collinear points, and a,
b, ¢, d are their polars for a given proper conic, then (AB,CD) = (ab,cd).
(See Theorem 3.9.10.)

6.3.14 THEOREM. If ABCD is a complete quadrangle inscribed in a proper
conic, then each diagonal point of the quadrangle is the pole, for the conic, of
the line determined by the other two diagonal points. (See Theorem 3.10.2.)

PROBLEMS

1. (a) Show that a parabola is tangent to the line at infinity.
(b) Show that no two tangents to a parabola can be parallel.
(c) TP and TQ touch a parabola at P and Q; TV bisects PQ in V and intersects
the parabola in R. Show that R is the midpoint of TV.
(d) Prove that the line half way between a point and its polar for a parabola is
tangent to the parabola.
(e) Prove that the lines joining the midpoints of the sides of a triangle which is
self-conjugate for a parabola are tangent to the parabola.
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2. We define the center of a proper conic to be the pole for the conic of the line at
infinity. Prove the following:
(a) The center of a parabola is at infinity.
(b) The center of a hyperbola is an ordinary point lying outside the curve.
(c) The center of an ellipse is an ordinary point lying inside the curve.

Hyperbolas and ellipses are called central conics.

(d) The center of a central conic bisects every chord of the conic through it,
and is thus a center of symmetry of the conic.
(e) All proper conics circumscribing a parallelogram have their centers at the
center of the parallelogram.
(f) If Cis the center of a central conic, TP and TQ touch the conic at P and Q,
and CT cuts PQ in ¥ and the conic in U, then (CV)CT) = (CU)2.

3. The locus of the midpoints of a family of parallel chords of a proper conic is
called a diameter of the conic. Prove the following:
(a) Diameters of a proper conic are straight lines.
(b) All diameters of a central conic pass through the center.
(c) All diameters of a parabola are parallel.
(d) The tangents at the ends of a diameter of a central conic are parallel to the
chords which the diameter bisects.
(e) If the tangents at the ends of a chord of a central conic are parallel, the
chord is a diameter of the conic.
(f) Two chords of a central conic which bisect each other are diameters of the
conic.

4. Two diameters of a central conic which are conjugate lines for the conic are
called a pair of conjugate diameters of the conic. Prove the following:
(a) Each of two conjugate diameters of a central conic bisects the chords parallel
to the other.
(b) The diagonals of a parallelogram circumscribing a central conic are con-
jugate diameters of the conic; the points of contact are the vertices of a parallelo-
gram whose sides are parallel to the above diagonals.
(c) If each diameter of a central conic is perpendicular to its conjugate diameter,
the conic is a circle.

5. The tangents to a hyperbola from its center are called the asymptotes of the
hyperbola. Prove the following:
(a) The asymptotes of a hyperbola harmonically separate every pair of conjugate
diameters of the hyperbola.
(b) Let a line cut a hyperbola in Q and Q’, and cut its asymptotes in R and R’.
Then RQ = Q'R’.
(c) The intercept between the asymptotes of a hyperbola on any tangent to the
hyperbola is bisected by the point of contact of the tangent.

6.4 APPLICATIONS

In this section we apply projection to extend to the general proper conic
some descriptive properties first established for the circle.

6.4.1 THE GENERALIZED BUTTERFLY THEOREM. Let O (see Figure 6.4a) be
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Figure 6.4a

the midpoint of a given chord RS of a proper conic c,, let two other chords
TU and VW be drawn through O, and let a conic c, through U, V, T, W cut
the given chord in E and F. Then O is the midpoint of EF.

Let MN, the polar of O for conic ¢;, cut TU in M and VW in N. Then,
since (VW,ON) = (TU,OM) = —1, MN is also the polar of O for conic c,.
Moreover, RS is parallel to MN since (RS,00) = — 1. Therefore (EF,0x)
= —1 and O is the midpoint of EF. (See Theorem 3.10.3.)

6.4.2 PASCAL’S THEOREM. If a hexagon (not necessarily convex) is inscribed
in a proper conic, the three points of intersection of pairs of opposite sides
of the hexagon are collinear. (See Theorem 2.4.4.)

6.4.3 BRIANCHON’S THEOREM. If a hexagon (not necessarily convex) is
circumscribed about a proper conic, the three lines joining pairs of opposite
vertices of the hexagon are concurrent. (See Theorem 3.10.1.)

6.4.4 CHASLES’ THEOREM. Let A, B, C, D be four distinct points on a
proper conic and let the tangents to the conic at A, B, C, D meet a fixed
tangent t to the conic in the points A’, B', C', D’ respectively. Then, if O is
any point on the conic, O(AB,CD) = (A’'B’,C'D’).

Since the theorem is a projective one, it suffices to establish it for the case
where the proper conic is a circle. Let K be the center of the circle (see
Figure 6.4b), and T the point of contact of the tangent z. Then X A’'KT =
1 X AKT = £ AOT. It follows that pencils O(4BCD) and K(A'B'C’'D’) are
congruent, and O(AB,CD) = K(A'B',C'D’) = (A'B’,C'D’).

6.4.5 CARNOT’S THEOREM. If (see Figure 6.4c) the sides BC, CA, AB of
a triangle ABC cut a proper conic in the points A, and A,, B, and B,, C,
and C, respectively, then
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9] (AC)(AC,)BA)BA)CB)(CB)
=(AB)(AB,)(BC,)(BC,)(CA,)(CA,).
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Figure 6.4b 0 ’

Figure 6.4c

We shall assume that no one of the points of intersection is either an
ideal point or a vertex of the triangle. Then the left member of (1) divided
by the right member of (1) is an h-expression, and is therefore (by Theorem
6.2.2) invariant in value under projection. By the definition of a proper
conic, there is a perspectivity which carries the conic into a circle. Now
relation (1) holds for a circle, since (4'C{)(A4'C;) = (4'B{)(A’'B,), etc.
Hence the A-expression has the value + 1, and the theorem follows.

6.4.6 THEOREM. Let PQR be a triangle and let P', Q', R’ be the poles of
QR, RP, PQ for a proper conic K. Then P, Q, R are the poles of Q'R’, R'P’,
P'Q’ for the conic K. (See Theorem 3.10.4.)

6.4.7 DerINITIONS. Two triangles are said to be conjugate, or polar, for
a proper conic if each vertex of one triangle is the pole of a side of the other
triangle. If a triangle is conjugate to itself—that is, each vertex is the pole
of the opposite side—the triangle is said to be self-conjugate, or self-polar,
for the conic.

6.4.8 THEOREM. Two triangles which are conjugate for a proper conic are
copolar to one another. (See Theorem 3.10.6.)

6.4 Applications
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6.4.9 HEsse’s THEOREM (1840). If two pairs of opposite vertices of a com-
plete quadrilateral are conjugate points for a proper conic, then the third pair
of opposite vertices are also conjugate points for the conic. (See Theorem
3.10.7)

PROBLEMS

1. If PQ is a chord of a proper conic, U any point on line PQ, and V the poin_t
where the polar of U for the conic cuts line PQ, show that 1/PU + 1/PV
= constant.

2. TP and TQ touch a proper conic at P and Q, and the bisector of angle PTQ
cuts the chord PQ in U. RUR’ is any chord through U. Show that TU bisects
angle RTR'.

3. Let A, B, C be three points on a proper conic, CT the tangent to the conic at C,
and CD such that C(TD,AB) = —1. Show that CD passes through the pole
of AB.

4. TP and TQ touch a proper conic at P and Q. The tangent at a point R on the
conic cuts TP, TQ, PQ in L, M, N respectively. Show that (LM,RN) = —1.

5. A chord PQ is drawn through the midpoint U of a chord 4B of a proper conic.
If the tangents at P and Q cut AB in L and M, prove that U is the midpoint
of LM.

6. TP and TQ touch a proper conic at P and Q. A tangent to the conic parallel
to PQ cuts TP and 7Q in M and N respectively, and touches the conic at R.
Show that R is the midpoint of MN.

7. A, B, C, D are four points on a proper conic; AB and CD intersect in R;
AC and BD intersect in S; the tangents to the conic at 4 and D intersect in 7.
Prove that R, S, T are collinear.

8. With straightedge alone: (a) Draw the tangents to a proper conic from a given
point outside the conic. (b) Draw the tangent to a proper conic at a given point
on the conic.

9. (a) If a pentagon 12345 is inscribed in a proper conic, show that the pairs of
lines 12, 45; 23, 51; 34 and the tangent at 1, intersect in three collinear points.
(b) Show that the pairs of opposite sides of a quadrangle inscribed in a proper
conic, together with the pairs of tangents at opposite vertices, intersect in four
collinear points.

(c) Show that if a triangle is inscribed in a proper conic, then the tangents at
the vertices intersect the opposite sides in three collinear points.

10. (a) If a pentagon ABCDE is circumscribed about a proper conic, and F is the
point of contact of side AB, show that BE, CA, DF are concurrent.
(b) Show that the lines joining the points of contact of pairs of opposite sides
of a quadrilateral circumscribed about a proper conic, and the two diagonals
of the quadrilateral, are concurrent.
(c) Show that if a triangle is circumscribed about a proper conic, then the
lines joining the vertices and the points of contact of the opposite sides are
concurrent.
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11. The sides AB, BC, CD, . . . of a polygon intersect a proper conic in A, and A4,,
Bl and Bz, Cl and Cz P Show that

(A4,X(AA4,)BB)BB.)XCC,XCCy) ---
= (BA,)(BA,)(CB,)(CB,)(DC)(DC3) . . ..
(This is a generalization of Carnot’s Theorem.)

12. B, B, and 4,4, are two variable chords of a proper conic drawn through two
fixed points 4 and B respectively. If 4,4,, B, B, intersect in C, show that

(BA)(BA2)(CB/)(CB:)/(AB,) (AB:)(CA,)(CA,)

is constant.

13. A proper conic intersects the sides BC, CA, AB of a triangle ABC in P, and
P, O, and Q,, R, and R, respectively. BQ, and CR; intersect in X, AP,
and CR, intersect in Y, AP, and BQ, intersect in Z. Show that AX, BY, CZ

are concurrent.

14. Triangle A’B’C’ is circumscribed about a proper conic; points 4, B, C are the
points of contact of the sides B'C’, C’'A’, A’B’ respectively. If D, E, F are taken
on BC, CA, AB such that AD, BE, CF are concurrent, show that A’D, B’E,
C’F are also concurrent.

15. O is a variable point on a proper conic and M and N are a fixed pair of con-
jugate points for the conic; OM and ON cut the conic again in P and Q. Show
that PQ passes through a fixed point.

16. Show that the proofs of Theorems 3.10.6 and 3.10.7 are descriptive, and can
therefore be applied directly to prove Theorems 6.4.8 and 6.4.9.

6.5 THE CHASLES-STEINER DEFINITION OF A PROPER CONIC

In this section we introduce an alternative definition of a proper conic that
was obtained and utilized by both Michel Chasles and Jacob Steiner in
certain of their works. The definition is a singularly convenient one for the
development of the projective properties of conics. We commence by stating
a projective generalization of Theorem 2.6.5.

6.5.1 Tueorem. If A, B, C, D are any four distinct points on a proper
conic, and if U and V are any two points on the conic, then U(AB,CD) =
V(AB,CD), where U(A), for example, is taken as the tangent to the conic
at A if U should coincide with A. (See Theorem 2.6.5.)

An easy consequence of Theorem 6.5.1 is the following.

6.5.2 THEOREM. If P is a variable point on a proper conic, and if U and
V are any two distinct points on the conic, then the complete pencils U(P) and
V(P) are homographic and such that line U(V) does not correspond to line

V().
For if P,, P,, P;, P, are any four distinct positions of P we have, by
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Theorem 6.5.1, U(P,P,,P; P,) = V(P,P,,P; P,). Hence the complete pen-
cils U(P) and V(P) are homographic. Also, line U(¥) cannot correspond
to line V(U), for if it did the locus of P would (by Theorem 2.7.3(2)) be a
straight line, which is impossible since the locus of P is a proper conic.

This last theorem may now be restated in the following form.

6.5.3 THEOREM. A proper conic passing through two distinct points U
and V may be regarded as the locus of the points of intersection of corresponding
lines of two homographic pencils on U and V, where line U(V) does not
correspond to line V(U).

It is natural to wonder if the converse of Theorem 6.5.3 is also true.
We prove that it is.

6.5.4 THEOREM. The locus of the points of intersection of corresponding
lines of two homographic pencils on distinct vertices U and V, where line
U(V) does not correspond to line V(U), is a proper conic passing through U
and V.

Let P (see Figure 6.5a) be a variable point on the locus; then pencil

Figure 6.5a

U(P) and V(P) are homographic. Let line V(W) correspond to line U(¥).
By hypothesis V(W) does not coincide with U(V). Draw any circle tangent
to VW at V, and let this circle cut VU in U’ and the variable line VP in P’.

Since pencils U(V,P) and V(W,P) are homographic, and (by Theorem
6.5.2) pencils V(W,P) and U'(V,P’) are homographic, it follows that pencils
U(V,P) and U'(V,P’) are homographic. But in these last two pencils, the
corresponding lines U(¥) and U’(V) are coincident. It follows (by Theorem
2.7.3(2)) that the variable intersection X of corresponding variable lines
U(P) and U'(P’) traces a line x. Let PP’ and UU’ cut line x in points Y
and Z.

Now rotate the figure of the circle about line x out of its original plane,
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and let V", U”, P" be the new positions of V, U’, P'. Then U"P", V"P",
V"U” cut line x in points X, Y, Z respectively. Thus triangles YUP and
V"U"P” are coaxial (along x), and must therefore be copolar. That is, VV",
UU”, PP” are concurrent in a point O, and the figure V' PU is the projection
from O of the figure V”"P"U". Since P” describes a circle passing through
U” and V", it follows that P describes a proper conic passing through U
and V.

Theorems 6.5.3 and 6.5.4 give us a necessary and sufficient condition for
a locus of points to be a proper conic. The condition can then be taken as
an alternative definition of a proper conic, as follows.

6.5.5 THE CHASLES-STEINER DEFINITION OF A PROPER CONIC. A proper
conic is the locus of the points of intersection of corresponding lines of two
homographic pencils on distinct vertices U and V, where line U(V) does
not correspond to line V(U).

We now prove a couple of important theorems with the assistance of the
Chasles-Steiner definition of a proper conic.

6.5.6 THEOREM. Any projectivity carries a proper conic into a proper conic.

It is sufficient to prove that any perspectivity carries a proper conic into
a proper conic. Let ¢’ be the image, under a perspectivity, of a proper conic c.
By the Chasles-Steiner definition, ¢ is the locus of the points of intersection
of corresponding lines of two homographic pencils U(P) and V(P) on
distinct vertices U and ¥, where line U(¥’) does not correspond to line ¥ (U).
Since homographic pencils of this sort project into homographic pencils of
the same sort, it follows that ¢’ is the locus of the points of intersection
of corresponding lines of two homographic pencils U’(P’) and V'(P’), where
the vertices U’ and V'’ are distinct and line U’(¥’) does not correspond to
line V’(U’). By the Chasles-Steiner definition, ¢’ is seen to be a proper conic.

6.5.7 THEOREM. There is one, and only one, proper conic passing through
five distinct coplanar points no three of which are collinear.

Let the five points be U, V, A, B, C. Take U and V as vertices of pencils.
Through U draw any line U(X) and let V(Y) be such that U(4B,CX) =
V(AB,CY). Then the lines U(X) and V(Y) generate homographic pencils of
which U(A) and V(A4), U(B) and V(B), U(C) and V(C) are corresponding
lines. Since no three of the five points are collinear, line U(V) does not
correspond to line V(U). It follows, by the Chasles-Steiner definition, that
the locus of the point P of intersection of U(X) and V(Y) is a proper conic
passing through the five given points U, V, A, B, C. Now there can be only
the one proper conic passing through U, V, 4, B, C, for the other point P
in which an arbitrary line U(X) cuts a proper conic through U, V, 4, B, C
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is uniquely determined by the relation U(AB,CP) = V(AB,CP). Hence an
arbitrary line through U cuts all proper conics through U, ¥, 4, B, C in
the same point; that is, all the proper conics coincide.

6.5.8 CoOROLLARY. Two distinct proper conics can intersect in at most
Sfour points.

PROBLEMS

1. If the circle and conic of Figure 6.5a intersect in two points other than ¥, prove
that line x passes through the two points.

2. If the three points of intersection of pairs of opposite sides of a (not necessarily
convex) hexagon are collinear, and if no three of the vertices of the hexagon
are collinear, prove that the six vertices of the hexagon lie on a proper conic.
(This is the converse of Pascal’s Theorem.)

3. If on the sides BC, CA, AB of a triangle, pairs of points 4; and 4,, B; and
B,, C, and C, are taken such that

(AC,)(AC,)(BA,)BA)CB)CB)
= (AB,)(4B,)(BC,)(BC,)(CA,)(CA,),

and if no three of the six points 4,, A,, B,, B,, C,, C, are collinear, prove
that the six points lie on a proper conic. (This is the converse of Carnot’s
Theorem.)

4. Prove that the parallels through any point to the sides of a triangle cut the sides
in six points on a proper conic.

5. (a) We are given five points on a proper conic, but we are not given the conic
itself. Draw the tangent to the conic at one of the five points.
(b) We are given four points on a proper conic and the tangent at one of them,
but we are not given the conic itself. Construct further points on the conic.
(c) We are given three points on a proper conic and the tangents at two of them,
but we are not given the conic itself. Construct the tangent at the third point.

6. A proper conic c intersects the sides BC, CA, AB of a triangle ABC at 4, A4,;
B,, B,; C,, C, respectively. A4; and A, are the harmonic conjugates of A4,
and A, for B and C; B, and B, are the harmonic conjugates of B; and B,
for C and 4; C; and C, are the harmonic conjugates of C; and C, for 4 and B.
Prove that 4;, A;, B}, B;, C}, C, lie on a proper conic or on two straight lines.

7. On the tangent at point O of a proper conic a variable point P is taken, and PT
is drawn to touch the conic at 7. If S is any other point on the conic, show that
the locus of the intersection of OT and SP is another proper conic touching the
original conic at O and S.

8. C and C’ are two fixed points on a proper conic c, r is a fixed straight line, P
is a variable point on ¢, CP and C’P cut r in R and R’. Show that the locus of
the intersection Q of CR’ and C'R is another conic.

9. A, B, C, D, U, V are six points on a proper conic. Let J, K, L, M denote the
points of intersection of U4 and ¥C, UB and VD, UC and VA, UD and VB.
Show that J, K, L, M lie on a proper conic passing through U and V.
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6.6 A PROPER CONIC AS AN ENVELOPE OF LINES

A curve may be regarded either as the locus of its points or as the envelope
of its tangents (see Figure 6.6a). From the first point of view, the curve is

Figure 6.6a
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called a point curve; from the second point of view, it is called a line curve
So far we have been considering a proper conic from the first point of view,
and we now turn to the second point of view. We first introduce some
convenient notation.

6.6.1 NoTATION. The cross ratio of four distinct points in which a line
u is cut by four lines a, b, ¢, d will be denoted by u(ab,cd). By u(a) we mean

the point in which base u is cut by line a.

6.6.2 THEOREM. If a, b, c, d are any four distinct tangents of a proper
conic, and if u and v are any two tangents of the conic, then u(ab,cd) =
v(ab,cd), where u(a), for example, is taken as the point of contact of tangent

a if u should coincide with a.
This is an immediate consequence of Chasles’ Theorem 6.4.4.

An easy consequence of Theorem 6.6.2 is the following.

6.6.3 THEOREM. If p is a variable tangent of a proper conic, and if u and
v are any two distinct tangents of the conic, then the complete ranges u(p)
and v(p) are homographic and such that point u(v) does not correspond to
point v(u).

For if p,, p,, p3, ps are any four distinct positions of p we have, by

Theorem 6.6.2, u(pip,,p3ps) = V(P1P,2,P3P4). Hence the complete ranges
u(p) and v(p) are homographic. Also, point u(v) cannot correspond to point
v(u), for if it did the envelope of p would (by Theorem 2.7.3(1)) be a point,

which is impossible since the envelope of p is a proper conic.
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This last theorem may now be restated in the following form.

6.6.4 THEOREM. A proper conic touching two distinct lines u and v may
be regarded as the envelope of the lines joining corresponding points of two
homographic ranges on u and v, where point u(v) does not correspond to point
v(u).

It is natural t/o wonder if the converse of Theorem 6.6.4 is also true.
We prove that it is.

6.6.5 THEOREM. The envelope of the lines joining corresponding points of
two homographic ranges on distinct bases u and v, where point u(v) does not
correspond to point v(u), is a proper conic tangent to u and v.

Let p (see Figure 6.6b) be a variable line of the envelope and let p cut u

Figure 6.6b

in P, and » in P,. Then ranges (P,) and (P,) are homographic. Let U be
the intersection of u and v, and let T on v correspond to U on u. By hypothesis
T does not coincide with U. Draw any circle tangent to v at T and let u’
and p’ be the other tangents to the circle from U and P, respectively. Denote
the intersection of ¥’ and p’ by P,..

Since ranges (U,P,) and (T,P,) are homographic, and (by Theorem 6.6.3)
ranges (7T,P,) and (U,P,) are homographic, it follows that ranges (U,P,)
and (U,P,.) are homographic.

Now rotate the circle and its tangents ' and p’ about the line v out of
the original plane, and let 4", p”, P,. denote the new positions of u', p’, P,.,
respectively. Since ranges (U,P,) and (U,P,.) are homographic, and their
common point U is self-corresponding, it follows (by Theorem 2.7.3(1))
that the variable line P, P, passes through a fixed point O. With O as center
of perspectivity, we see that variable line p” projects into variable line p.
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But the variable line p” envelops a circle (the circle in its new position)
touching lines v and u”. It follows that p must envelop a proper conic
touching lines v and u.

We conclude the section with the following theorem and its corollary.

6.6.6 THEOREM. There is one, and only one, proper conic tangent to five
distinct coplanar lines no three of which are concurrent.

Let the five lines (see Figure 6.6c) be u, v, a, b, c. Take u and v as bases

b ¢
p
u Au \Bu /Cu Pu

Figure 6.6¢

of ranges and let a, b, ccut w and v in 4, B,, C, and 4, B,, C, respectively.
Take any point P, onu and let P,onvbesuchthat(4,B,,C,P,) = (4, B,,C, P,).
Then points P, and P, generate homographic ranges in which 4, and 4,,
B, and B,, C, and C, are corresponding points. Since no three of the five
lines are concurrent, point #(v) does not correspond to point »(u). It follows
(by Theorem 6.6.5) that the envelope of P, P, is a proper conic touching
the five lines u, v, a, b, c. Now there can be only the one proper conic
touching the five given lines u, v, a, b, c, for the other tangent p, to a proper
conic touching u, v, a, b, ¢, through an arbitrary point P, of u is uniquely
determined as the line P, P, where (4,B,,C,P,) = (4,B,,C,P,). It follows
that all proper conics touching u, v, a, b, ¢ are the envelope of the same
variable line p, that is, all the proper conics coincide.

6.6.7 COROLLARY. Two distinct proper conics have at most four common
tangents.

PROBLEMS

1. If the three joins of pairs of opposite vertices of a (not necessarily convex)
hexagon are concurrent, and if no three of the sides of the hexagon are con-
current, prove that the six sides of the hexagon envelop a proper conic. (This is
the converse of Brianchon’s Theorem.)
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2. (a) We are given five tangents to a proper conic, but we are not given the conic
itself. Construct the point of contact of one of the five tangents.

(b) We are given four tangents to a proper conic and the point of contact of
one of them, but we are not given the conic itself. Construct further tangents to
the conic.

(c) We are given three tangents to a proper conic and the points of contact of
two of them, but we are not given the conic itself. Construct the point of contact
of the third tangent.

3. A variable tangent PP’ intersects two fixed parallel tangents to a proper conic
in P and P’. If A and B are the points of contact of the two fixed tangents,
prove that (AP)(BP’) is constant.

4. A variable tangent intersects the asymptotes of a hyperbola at P and P’. If C
is the intersection of the asymptotes, prove that (C_P)(W) is constant, and
therefore that triangle CPP’ has a constant area.

5. Two ellipses ¢ and ¢’ touch externally at O. From a variable point R on the
common tangent at O lines are drawn touching ¢ and ¢’ at P and P’. Show that
PP’ passes through the point of intersection of the other two common tangents
to ¢ and ¢’.

6. OPQ is a fixed triangle and 4 and B are fixed points not collinear with O.
R and S are variable points on OP and OQ such that RS is parallel to PQ.
Prove that the locus of the point of intersection of AR and BS is a conic passing
through A4, B, O.

7. (a) The sides of a triangle pass through fixed noncollinear points and two of
the vertices lie on fixed lines. What is the locus of the remaining vertex?

(b) The vertices of a triangle lie on fixed nonconcurrent lines and two of the
sides pass through fixed points. What is the envelope of the remaining side?

8. Prove that if ABC and A’B’C’ are two triangles inscribed in a proper conic,
then their six sides touch another proper conic. (This result is due to Brianchon.)

6.7 RECIPROCATION AND THE PRINCIPLE OF DUALITY

There is, in plane projective geometry, a remarkable symmetry between
points and lines, such that if in a true projective proposition about ““ points ”’
and “lines” we interchange these two words, and perhaps smooth out the
language, we obtain another true projective proposition about ““lines” and
“points.” The reader very likely has already noticed this symmetric pairing
of the propositions of projective geometry. As a simple example, consider
the following two propositions related in this way:

Any two distinct points determine one and only one line on which they both
lie.

Any two distinct lines determine one and only one point through which they
both pass.

In an ordinary plane, only the first of these two propositions is true without
exception. In an extended, or projective, plane, however, both propositions
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are true without exception—regardless of whether the points and lines
involved are ordinary or ideal.

We note that in passing from the statement of the first proposition to
the statement of the second proposition, we not only interchanged the words
“point” and ““line,” but we also altered the final phrase somewhat. Had
we not altered the final phrase, the second proposition would have sounded
a trifle awkward. This awkwardness of sound, however, results only because
of a blemish in our language. Since the relation of a point P lying on a line
[ and that of a line / passing through a point P are symmetrical relations,
a perfect language would express the two relations by a symmetrical ter-
minology. We accordingly agree, in projective geometry, to express these
two relations by the two phrases “point P is on line /” and “line / is on
point P.” Employing this modified language, we can pass directly from the
statement of either of the propositions to that of the other by a mere
mechanical interchange of the words “point” and ““line.”

For convenience, we call our modified language the on-language. The
observed symmetry between points and lines in plane projective geometry
leads to the so-called principle of duality for the plane, which may now be
stated as follows:

6.7.1 THE PRINCIPLE OF DUALITY FOR THE PLANE. If in a true projective
proposition, stated in the on-language, about points and lines in a plane, we
interchange the words *“ point” and “‘ line,”” we obtain a second true projective
proposition, stated in the on-language, about lines and points in a plane.

The principle of duality, which pairs the propositions of plane projective
geometry, is of far-reaching consequence, and was first explicitly stated by
Joseph-Diez Gergonne in 1826, though it was led up to by the works of
Poncelet and others during the first quarter of the nineteenth century. Once
the principle of duality is in some way established, then the proof of one
proposition of a dual pair automatically carries with it the proof of the
other.

Pascal’s Theorem is a projective proposition; let us dualize it. We first
restate Pascal’s Theorem in the on-language:

If the six points 1, 2, 3, 4, 5, 6 lie on a proper point conic, then the points
determined by the three pairs of lines (12), (45); (23), (56); (34), (61) lie on
a line.

Dualizing we obtain:

If the six lines 1, 2, 3, 4, 5, 6 lie on a proper line conic, then the lines deter-
mined by the three pairs of points (12), (45); (23), (56); (34), (61) lie on a
point.

This dual is, of course, Brianchon’s Theorem. Using less artificial language,
Pascal’s Theorem and its dual may now be stated as:
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If a hexagon is inscribed in a proper conic, then the points of intersection
of the three pairs of opposite sides are collinear.

If a hexagon is circumscribed about a proper conic, then the lines joining
the three pairs of opposite vertices are concurrent.

With a little practice, one becomes adept at dualizing a proposition of pro-
jective geometry without having to resort to the artificial on-language.

Poncelet maintained that the principle of duality is a consequence of the
theory of poles and polars, which, though known earlier, received its first
systematic development in his hands. If I" is a fixed proper conic, then to
each point P of the extended plane can be associated the polar p’ of P for
the conic, and to each line / of the extended plane can be associated the
pole L' of I/ for the conic. This correspondence, which maps the points and
lines of the extended plane onto the lines and points of the extended plane,
possesses some important properties. First of all, the correspondence is
invariant under projection. Further, an incident point and line map into
an incident line and point, collinear points map into concurrent lines, and
concurrent lines map into collinear points.

Now imagine that we have established a projective property about a
plane figure F composed of points and lines. Let F’ be the figure which one
obtains by replacing the points and lines of F by their polars and poles
with respect to a given proper conic I" lying in the plane of F. Then one
will obtain from the projective property of figure F a corresponding pro-
jective property of figure F’, in which the roles played by the words ““ point”
and ““line” have been interchanged. The two propositions will be the duals
of each other.

It must be confessed that there seems to be something wanting in the
above justification of the principle of duality. The figures of two dual
theorems need not actually be related to one another by a pole-polar trans-
formation. Indeed, since the statement of the principle of duality does not
mention any proper conic I', it would seem desirable to justify the principle
without the intervention of any such conic. One feels that the principle of
duality needs a deeper and more general handling than that given by Poncelet.
Such a general treatment will be discussed in Chapter 8, and still another
general treatment—an analytical one—will be discussed early in the second
volume of our work.

Before closing this section, we very briefly consider Poncelet’s pole-polar
transformation in a proper conic I'; the transformation is a generalization
of the one considered in Section 3.9, and much use is made of it in more
extended treatments of projective geometry.

6.7.2 DerINITIONS. Let I be a fixed proper conic. Then the transforma-

tion that maps each point P of the extended plane into its polar line p’,
and each line p of the extended plane into its pole P’, with respect to I is
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called reciprocation in I'. The conic I is called the base-conic of the recipro-
cation.

6.7.3 THEOREM. (1) A4 point curve reciprocates into a line curve. (2) A line
(considered as a range of collinear points) reciprocates into a point (considered
as a pencil of concurrent lines). (3) The base-conic reciprocates into itself.
(4) Reciprocation in a given base-conic is involutoric.

6.7.4 THEOREM. A proper conic reciprocates into a proper conic.

Consider (see Theorem 6.5.3) a proper conic obtained as the locus of the
point P of intersection of corresponding lines of two homographic pencils
on distinct vertices U and ¥V, where line U(V) does not correspond to line
V(U). These homographic pencils on distinct vertices reciprocate into two
homographic ranges on distinct bases, and the intersections of corresponding
lines of the pencils reciprocate into the joins of corresponding points of the
two ranges. It follows that the reciprocal of the proper conic is the envelope
of the joins p’ of corresponding points of two homographic ranges on
distinct bases #’ and v’, where point #'(v') does not correspond to point
v'(u"). It follows (by Theorem 6.6.5) that the reciprocal of the proper conic
is a proper conic.

A plane passing through the vertex of a circular cone may cut the cone
in a pair of straight lines. Such a section of a circular cone is called an
improper, or degenerate, conic of the first type. In order to have Theorem
6.7.4 hold for both proper and improper conics, it is customary to define
a pair of points (considered as the vertices of the pencils through them)
as an improper conic of the second type. Note that Pappus’ Theorem 6.2.6
is Pascal’s Theorem for an improper conic of the first type.

PROBLEMS

1. Write out a description of each of the following figures, dualize the description,
and sketch the dual figure.

(@)

Figure 6.7a Figure 6.7b
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2. What is the dual of a complete quadrangle?

3. State the dual of the following theorem: If points X, Y, U are collinear and if
X(AB,CU) = Y(AB,CU) then points A, B, C are collinear.
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. State the dual of the following theorem: ABC is a triangle, L a fixed point on

AB, O a variable point on CL. If 4O cuts CB in P and BO cuts CA in Q, then
PQ intersects AB in a fixed point M.

5. State the dual of the following theorem: Copolar triangles are coaxial.
6. State the dual of Pappus’ Theorem 6.2.6.
7. Dualize: (a) Theorem 6.3.1, (b) Theorem 6.3.5, (c) Theorem 6.3.8, (d) Theorem

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

6.3.14.

. Show that Theorems 6.3.11 and 6.3.12 are duals of one another.
. Prove that the reciprocal of a pole and polar for a proper conic is a polar and

pole for the reciprocal conic.

Show that a self-conjugate triangle for a conic ¢ reciprocates into a self-con-
jugate triangle for the reciprocal conic of c.

State Pascal’s Theorem, Pappus’ Theorem, and their converses as a single
theorem.

(a) A point moves along a straight line. Show that the point of intersection of
its polar lines with respect to two given proper conics traces a conic.
(b) State the dual of the theorem of part (a).

(a) Given six coplanar points 4, B, C, D, E, P, no three of 4, B, C, D, E being
collinear. Construct the polar of P with respect to the proper conic that passes
through A4, B, C, D, E.

(b) Given six coplanar lines a, b, ¢, d, e, p, no three of a, b, c, d, e being con-
current. Construct the pole of p with respect to the proper conic touching
a, b, c, d, e.

(a) A point moves on a proper conic. Show that the polar line of the point
with respect to a second proper conic envelops a third proper conic.
(b) State the dual of the theorem of part (a).

(a) The polar of a point 4 with respect to one conic is a, and the pole of a
with respect to another conic is 4’. Show that as A travels along a line, A’
also travels along a line.

(b) State the dual of the theorem of part (a).

(a) Prove that the lines joining the vertices of a triangle to any two points in
the plane of the triangle meet the opposite sides in six points which lie on a
conic.

(b) State the dual of the theorem of part (a).

(a) If AL, BM, CN are three concurrent cevian lines of a triangle 4BC, show
that there is a proper conic tangent to BC, CA, AB at L, M, N respectively.
(b) State the dual of the theorem of part (a).

A complete plane n-point is a figure consisting of n coplanar points, no three of
which are collinear, and the ,C, lines determined by them. Describe a complete
plane n-line if it is the dual of a complete plane n-point.

A planar figure consisting of points and lines is called a (plane) configuration
if it consists of a;, points and a,, lines such that each point is on the same
number (a,.) of lines and each line is on the same number (a,,) of points. A
(plane) configuration is represented symbolically by the matrix
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Ay ax2
azy azz)’

(a) Show that the dual of a configuration is a configuration, and give its matrix.
(b) Show that the figure of Desargues’ Theorem in the plane is a self-dual
configuration, and give its matrix.

(¢) Show that a complete plane n-point and a complete plane n-line are con-
figurations, and give their matrices.

20. A complete space n-point is a figure consisting of » points, no four coplanar,
no three collinear, together with all the ,C, lines and ,C; planes determined by
them. Show that the Desargues’ configuration in a plane is a plane section of
a complete space S-point.

6.8 THE FOCUS-DIRECTRIX PROPERTY

We have defined a proper conic as any section of a right or oblique circular
cone made by a plane not passing through the vertex of the cone. It is a
remarkable fact, which we do not establish here, that all proper conics can
be obtained as sections of only right circular cones.

Using the above fact that a proper conic is always a section of a right
circular cone, we now derive a basic property of these curves which is
customarily employed when studying these curves by analytic geometry.

6.8.1 THEOREM. A noncircular proper conic is the locus of a point moving
in a plane so that the ratio of its distance from a fixed point in the plane to
its distance from a fixed line in the plane, not passing through the fixed point,
is a constant.

Consider the conic as a section made by a plane p cutting a right circular
cone (see Figure 6.8a). Let s be a sphere inside the cone, touching the cone
along a circle k whose plane we shall call ¢, and also touching plane p at
point F. Let planes p and g intersect in a line d. From P, any point on the
conic section, drop a perpendicular PR onto line d and a perpendicular
PS onto plane g. Let the element of the cone through P cut g in point E.
Finally, let o be the angle between planes p and ¢, and f the angle an element
of the cone makes with plane g. Then, since PF = PE (the segments being
tangent lines from an external point to a sphere), and triangles PSE and
PSR are right triangles with right angles at S, we have

PF/PR = PE/PR = (PS/PR)/(PS/PE) = sin a/sin f = e,
a constant independent of the position of P on the conic. The conic may
therefore be considered as the curve generated by a point P moving in the

plane p such that the ratio of its distance from the point F of p to its distance
from the line d of p is a constant e.

272  Projective Geometry



Figure 6.8a
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6.8.2 DeriNiTIONs. The fixed point F of Theorem 6.8.1 is called a focus
of the conic, the fixed line d is called a directrix of the conic, and the constant
e is called the eccentricity of the conic.

6.8.3 THEOREM. If e is the eccentricity of a proper conic, then the conic
is a parabola, an ellipse, or a hyperbola according as e =1, e <1, or e > 1.

If plane p in Figure 6.8a is parallel to one and only one element of the
cone, then o = f§, and e = 1; if plane p cuts every element of one nappe of
the cone, then a < f, and e< 1; if p cuts both nappes of the cone, then
a>pf, and e > 1.

6.8.4 REMARK. When plane p of Figure 6.8a is parallel to plane g, the
section is a circle. In this case there is no finite directrix d, but one easily
sees that this situation can be considered as a limiting position obtained
by letting the intersection d of planes p and g move farther and farther
away from the cone, the angle «, and hence also the fraction sin «/sin S,
becoming closer and closer to 0. This state of affairs is described by saying
that the directrix of a circle is at infinity and the eccentricity of a circle is 0.

6.8.5 THEOREM. An ellipse is the locus of a point moving in a plane such
that the sum of its distances from two fixed points in the plane is a constant.

Consider the ellipse as a section of a right circular cone (see Figure 6.8b).
Let s, and s, be two spheres touching the plane p of the ellipse at the points
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Figure 6.8b

F, and F, respectively, and touching the cone along the parallel circles k,
and k, respectively. Join an arbitrary point P of the ellipse to F, and F,,
and let the element of the cone through P cut k, and k, in E, and E, re-
spectively. Then PF; = PE, and PF, = PE, (each pair of equal segments
being tangent lines from an external point to a sphere). It follows that

PF1+PF2=PE1 +PE2=E1E2,

a constant independent of the position of P on the ellipse.
Note that if the ellipse is a circle, then F; and F, coincide at the center
of the circle.

6.8.6 THEOREM. A hyperbola is the locus of a point moving in a plane
such that the difference of its distances from two fixed points in the plane is
a constant.

We leave the establishment of this theorem, along the lines of the proof
of Theorem 6.8.5, to the reader.

The simple and elegant approach of this section was discovered around
the first quarter-mark of the nineteenth century by the two Belgian geom-
eters Adolphe Quetelet (1796-1874) and Germinal Dandelin (1794-1847).
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PROBLEMS

1. Establish Theorem 6.8.6.

2. Show that hyperbolas and noncircular ellipses have two distinct foci and two
associated directrices, each directrix being perpendicular to the line joining
the two foci.

3. Show that there exists an ellipse for each positive eccentricity e < 1, and there
exists a hyperbola for each eccentricity e > 1.

4. Show that there are two plane sections of a right circular cone which have a
focus at a given point within the cone.

5. Show that sections of a right circular cone made by parallel planes have equal
eccentricities.

6. If an ellipse and a right circular cone are given, find a section of the cone con-
gruent to the ellipse.

7. Prove that the sum of the distances of the vertex of a right circular cone from
the ends of any diameter of a given elliptic section is constant.

6.9 ORTHOGONAL PROJECTION

Let = and =’ be two planes not perpendicular to one another. The mapping
of plane n onto plane n’ which carries each point P of = into the foot P’
of the perpendicular from P to n’ is called the orthogonal projection of plane
n onto plane n'.

Orthogonal projection, being a particular kind of perspectivity, has all
the properties of a perspectivity, but it also has some special properties not
possessed by all perspectivities. It is because of these special properties that
orthogonal projection is such a highly useful transformation. We now
establish some of the special properties.

6.9.1 THEOREM. Under an orthogonal projection of a plane © onto a plane
n' not perpendicular to :

(1) ordinary points correspond to ordinary points,

(2) the lines at infinity correspond,

(3) parallel lines correspond to parallel lines,

(4) the ratio of two segments on a line is unaltered,

(5) the ratio of two segments on parallel lines is unaltered,

(6) the centroid of a triangle corresponds to the centroid of the corre-
sponding triangle,

(7) if A and A’ are two corresponding areas, then A' = A cos 0, where 0
is the angle between planes © and 7',

(8) the ratio of two areas is unaltered,

(9) circles map into homothetic ellipses.

The first property is obvious and the next two are consequences of the
first one. Properties (4) and (5) follow from the fact that the length of a
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line segment in #n’ is equal to the length of the corresponding segment in &
multiplied by the cosine of the angle between the lines of the two segments.
Property (6) is a consequence of property (4). Property (7) follows from
the fact that any area in 7« can be considered as the limit of the sum of thin
rectangular strips of common width parallel to the line of intersection of
planes @ and 7', the limit being taken as the number of strips increases
indefinitely; the lengths of these strips are unaltered by the projection, but
their width w becomes w cos 6. Property (8) is a consequence of property
(7). A circle clearly projects into an ellipse having its major axis parallel
to the line of intersection of planes = and n’; also, if @ and b are the semi-
major and semiminor axes of the ellipse, and r is the radius of the circle,
a=r and b =rcos 0, and property (9) follows.

6.9.2 THEOREM. Any ellipse may be orthogonally projected into a circle.

Let © be the plane of the ellipse and let a and b be the semimajor and
semiminor axes of the ellipse. Through a line in 7 parallel to the minor axis
of the ellipse, pass a plane n’ making an angle 6 = cos™ ! (b/a) with 7. The
reader may now easily show that the orthogonal projection of the ellipse
to plane 7’ is a circle of radius b.

6.9.3 CoROLLARY. If an ellipse is orthogonally projected into a circle, then
circles in the plane of projection correspond to those ellipses of the original
plane which are homothetic to the given ellipse.

6.9.4 THEOREM. Any triangle may be orthogonally projected into an
equilateral triangle.

Let the given triangle be ABC and let L, M, N be the midpoints of the
sides BC, CA, AB respectively. By Problem 17(a), Section 6.7, there is a
proper conic, which in this case clearly must be an ellipse, tangent to BC,
CA,AB at L, M, N. Orthogonally project this ellipse into a circle (by Theorem
6.9.2), triangle ABC and points L, M, N thereby mapping into triangle
A'B’'C’ and points L', M’', N'. Then, since BL' =L'C'=C'M'= M'A' =
A'N’' = N'B’, it follows that triangle A'B’C’ is equilateral.

We now give a few applications of orthogonal projection; further appli-
cations will be found in the problems at the end of the section. The reader
should note the employment of the transform-solve-invert procedure.

6.9.5 THEOREM. A necessary and sufficient condition for a triangle in-
scribed in an ellipse to have maximum area is that the centroid of the triangle
coincide with the center of the ellipse.

Orthogonally project the ellipse into a circle (Theorem 6.9.2). Triangles
of maximum area in the ellipse correspond to triangles of maximum area
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in the circle (Theorem 6.9.1(8)). But a necessary and sufficient condition
for a triangle inscribed in a circle to have maximum area is that the triangle
be equilateral, and a necessary and sufficient condition for the triangle to
be equilateral is that its centroid coincide with the center of the circle. The
theorem now follows (Theorem 6.9.1(6)).

6.9.6 THEOREM. The envelope of a chord of an ellipse which cuts off a
segment of constant area is a concentric homothetic ellipse.

Orthogonally project the ellipse into a circle (Theorem 6.9.2). The variable
chord of the ellipse corresponds to a variable chord of the circle which
cuts off a circular segment of constant area (Theorem 6.9.1(8)). But the
envelope of the variable chord of the circle is a concentric circle. The theorem
now follows (Corollary 6.9.3).

6.9.7 THEOREM. The area of a triangle DEF inscribed in a given triangle
ABC cannot be less than the area of each of the other three triangles formed.
(See Problem 4908, The American Mathematical Monthly, Apr. 1961, p. 386.)

Orthogonally project the inscribed triangle DEF into an equilateral
triangle D'E'F (see Figure 6.9a). It suffices to prove the theorem for the

B’

Figure 6.9a

AI

projected figure (Theorem 6.9.1(8)). Now if triangle A'B’'C’ is equilateral,
then clearly the area of no subtriangle can exceed that of D’E’'F’. Otherwise
there is some angle, say A’, greater than 60°. But then the perpendicular
from A’ on E'F’is less than the perpendicular from D’ on E'F’, and the
area of triangle D'E'F’ is greater than the area of triangle A’E’F".

6.9.8 THEOREM. If in the convex hexagon ABCDEF every pair of opposite
sides are parallel, then triangles ACE and BDF have equal areas. (See Article
5.8.15.

Let AB and DC intersect in P. Orthogonally project triangle BCP into
an equilateral triangle B'C'P’ (see Figure 6.9b). Then the given hexagon
ABCDEF projects into a hexagon A’'B’'C'D’E’'F’ whose opposite sides are
still parallel, but all of whose angles are equal to 120°. Denoting the con-
secutive sides of 4'B’C’'D'E’F’, starting with side A'B’, by &', b’, ¢', d', €',
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Figure 6.9b

d’ D

[, it then suffices (because area A'B’C’ = (a'b’ sin 120°)/2, etc.) to show that
) ab +cd +ef =fa +bc +de.
But (see the figure) a’ =d’' + e — b and ¢’ = ¢’ + f' — b’, and when these

values for a’ and ¢’ are substituted in (1) we obtain an identity. Hence the
theorem.

PROBLEMS

1. Show that the area of an ellipse with semiaxes a and b is mab.

2. Show that a triangle of maximum area inscribed in an ellipse has its sides
parallel to the tangents to the ellipse at the opposite vertices.

3. Find the maximum area possessed by a triangle inscribed in an ellipse of semi-
axes a and b.

4. Find the minimum area possessed by an ellipse circumscribed about a given
triangle of area K.

5. Prove that if an ellipse is projected orthogonally into a circle, then pairs of
perpendicular diameters of the circle correspond to pairs of conjugate di-
ameters of the ellipse. (For a definition of conjugate diameters see Problem 4,
Section 6.3.)

6. Prove that the area of any triangle, two of whose sides are conjugate radii
of an ellipse, is constant.

7. Prove that a triangle of maximum area inscribed in an ellipse, and having a
fixed chord for base, has its opposite vertex at an extremity of the diameter
conjugate to the base.

8. Construct the maximum triangle which can be inscribed in a given ellipse and
which has one of its vertices at a given point on the ellipse.

9. If PP’, QQ’ are a pair of variable parallel chords of an ellipse through the two
fixed points P and Q on the ellipse, show that P’Q’ envelops a concentric
homothetic ellipse.

10. AOB and A’O’B’, COD and C’O’D’ are pairs of parallel chords of an ellipse.
Show that

(0A)(0B)/(OCXOD) = (0'4A(0’B")/(0’'C')(O'D).
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11. We are given two concentric homothetic ellipses. Prove that all chords of the
outer one which touch the inner one are bisected by the point of contact.

12. Show that two parallel tangents to an ellipse are met by any other tangent in
points which lie on conjugate diameters.

13. TP, TQ are tangents, and TRS is a secant, of an ellipse. If ¥ is the midpoint
of RS and if Q¥ cuts the ellipse again in U, prove that PU is parallel to TS.

14. Prove that the greatest ellipse which can be inscribed in a parallelogram touches
the parallelogram at the midpoints of the four sides.

15. Prove that the chord of an ellipse which passes through a fixed interior point
and cuts off the greatest or least area is bisected by the point.

16. Three congruent homothetic ellipses of semiaxes a and b are such that each
touches the other two externally. Find the area of the curvilinear triangle
bounded by the three ellipses.

17. Using orthogonal projection obtain a generalization of the following theorem:

The feet of the perpendiculars dropped from any point of the circumcircle of
a triangle on the sides of the triangle are collinear.

18. Using orthogonal projection obtain a generalization of the following theorem:
The center of a circle inscribed in a quadrilateral is collinear with the midpoints
of the diagonals of the quadrilateral.

19. Using orthogonal projection obtain a generalization of the following theorem:
If a chord AQ of a circle of radius r cuts the diameter of the circle perpendicular
to the diameter through A4 in point R, then (AQ)(AR) = 2r2.

20. Prove, without using limits, thatif 4 and A’ are the areas of two corresponding
triangles under an orthogonal projection, then 4A” = A4 cos 6, where 0 is the
angle between the planes of the two triangles.
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Non-Euclidean
Geometry

7.1 Historical Background - 7.2 Parallels and
Hyperparallels - 7.3 Limit Triangles - 7.4 Saccheri
Quadrilaterals and the Angle-Sum of a Triangle

7.5 Area of a Triangle - 7.6 Ideal and Ultra-/deal
Points - 7.7 An Application of /deal and
Ultra-/deal Points - 7.8 Mapping the Plane onto the
Interior of a Circle - 7.9 Geometry and

Physical Space

Shortly after the first quarter of the nineteenth century a geometrical event
took place which proved to be of tremendous significance, not only for
geometry, but for the whole of mathematics; a geometry was invented which
differs radically from the traditional geometry of Euclid. Prior to this event
it was believed that there was, and indeed could be, only one possible ge-
ometry, and that any description of space contrary to the Euclidean descrip-
tion must of necessity be inconsistent and contradictory.

Geometry was liberated from its traditional mold, and the postulates of
geometry became, for the mathematician, mere hypotheses whose physical
truth or falsity need not concern him. It became apparent that the mathe-
matician may choose his postulates to suit his pleasure, so long as they be
consistent with one another. A postulate, as employed by the mathematician,
need have nothing to do with ““self-evidence”” or * factualness.”

With the possibility of inventing such purely ‘artificial” geometries it
became apparent that physical space must be viewed as an empirical concept
derived from our external experiences, and that the postulates of a geometry
designed to describe physical space are simply expressions of this experience
—Ilike the laws of a physical science. This point of view is in striking contrast
to the Kantian theory of space that dominated philosophical thinking at
the time of the invention of the new geometry. The Kantian theory claimed



that space is a framework already existing intuitively in the human mind,
that the axioms and postulates of Euclidean geometry are a priori judge-
ments imposed on the mind, and that without these axioms and postulates
no consistent reasoning about space can be possible. The invention of a
non-Euclidean geometry rendered this viewpoint completely untenable.

The invention of a non-Euclidean geometry, by puncturing a traditional
belief and breaking a centuries-long habit of thought, dealt a severe blow
to the absolute truth viewpoint of mathematics. Indeed, the invention not
only liberated geometry, but had a similar effect on mathematics as a whole.
Mathematics emerged as an arbitrary creation of the human mind, and not
as something essentially dictated to us of necessity by the world in which
we live.

The present chapter concerns itself with the first non-Euclidean geometry
that was invented—the so-called Lobachevskian geometry. We commence
with a sketch of the historical background that led to this momentous
discovery; probably nowhere in the whole study of mathematics is a dis-
cussion of historical origins more necessary than here for a true appreciation
of the subject. The broad effect of the discovery on both geometry in partic-
ular and mathematics in general will be the subject matter of the next
chapter.

7.1 HISTORICAL BACKGROUND

There is evidence that the theory of parallels gave the early Greeks con-
siderable trouble, and that at one time the theory involved an illogical
circularity. Euclid met the difficulty by defining parallel lines as coplanar
straight lines which do not meet one another however far they may be
produced in either direction, and by adopting as a basic assumption his
now famous fifth, or parallel, postulate:

If a straight line falling on two straight lines makes the interior angles on
the same side together less than two right angles, the two straight lines, if
produced indefinitely, meet on that side on which the angles are together less
than two right angles.

If the reader will turn to the Appendix, where Euclid’s initial explanations,
preliminary definitions, postulates, and axioms are listed, he will instantly
note a marked difference between the fifth postulate and the other four;
the fifth postulate lacks the terseness and the simple comprehensibility of
the other four. Recall (see Section 1.3) that, in a discourse conducted by the
Greek method of material axiomatics, a postulate is supposed to be a
primitive statement which is felt to be acceptable as immediately true on the
basis of the properties suggested by the initial explanations. It must be con-
fessed that the fifth postulate hardly satisfies this requirement of a postulate.

Proclus tells us that the fifth postulate was attacked from the very start.
A more studied examination reveals that it is actually the converse of Euclid’s
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Proposition I 17. Moreover, Euclid himself apparently tried to avoid the
postulate as long as he could, for he makes no use of it in his proofs until
he reaches Proposition I 29. It is not surprising that many Greek geometers
felt that the postulate smacked more of the nature of a proposition than of
a postulate. From the Greek point of view of material axiomatics, it was
certainly very natural to wonder whether the fifth postulate was really needed
at all, and to think that perhaps it could be derived as a theorem from the
remaining nine ‘‘axioms” or “postulates,” or, at least, that it could be
replaced by a more acceptable equivalent.

Of the many substitutes that have been devised to replace Euclid’s fifth
postulate, perhaps the most popular is that made well known in modern
times by the Scottish physicist and mathematician, John Playfair (1748-1819),
although this particular alternative had been advanced by others and had
been stated as early as the fifth century by Proclus. It is the substitute usually
encountered in present-day American high school texts, namely: Through a
given point not lying on a given line there can be drawn only one line parallel
to the given line.* Some other alternatives for the parallel postulate that
have been either proposed or tacitly assumed over the years are these:
(1) There exists a pair of coplanar straight lines everywhere equally distant
Jrom one another.(2) There exists a pair of similar noncongruent triangles. (3) If
in a quadrilateral a pair of opposite sides are equal and if the angles adjacent
to a third side are right angles, then the other two angles are also right angles.
(@) If in a quadrilateral three angles are right angles, the fourth angle is also
a right angle. (5) There exists at least one triangle having the sum of its three
angles equal to two right angles. (6) Through any point within an angle less
than 60° there can always be drawn a straight line intersecting both sides of
the angle. (7) A circle can be passed through any three noncollinear points.
(8) There is no upper limit to the area of a triangle.

It makes an interesting and challenging collection of exercises for the
student to try to show the equivalence of the above alternatives to the original
postulate stated by Euclid. To show the equivalence of Euclid’s postulate
and a particular one of the alternatives, one must show that the alternative
follows as a theorem from Euclid’s assumptions, and also that Euclid’s
postulate follows as a theorem from Euclid’s system of assumptions with
the parallel postulate replaced by the considered alternative.

The attempts to derive the parallel postulate as a theorem from the
remaining nine ‘axioms” and ‘ postulates” occupied geometers for over
two thousand years and culminated, as we shall see, in some of the most
far-reaching developments of modern mathematics. Many ““ proofs” of the
postulate were offered, but each was sooner or later shown to rest upon a
tacit assumption equivalent to the postulate itself.

It was not until 1733 that the first really scientific investigation of the
parallel postulate was published. In that year the Italian Jesuit priest Girolamo

* Propositions I 27 and I 28 guarantee, under the assumption of the infinitude of straight
lines, the existence of at least one parallel.
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Saccheri (1667-1733), while Professor of Mathematics at the University
of Pavia, published a little book entitled Euclides ab omni naevo vindicatus
(Euclid Freed of Every Flaw). In an earlier work on logic, Saccheri had
become charmed with the powerful method of reductio ad absurdum and
conceived the idea of applying this method to an investigation of the parallel
postulate. Without using the parallel postulate Saccheri easily showed, as
can any high school geometry student, that if, in a quadrilateral ABCD
(see Figure 7.1a), angles A and B are right angles and sides AD and BC are

D C

/ \

Figure 7.1a T T
o

A B

equal, then angles D and C are equal. There are, then, three possibilities:
angles D and C are equal acute angles, equal right angles, or equal obtuse
angles. These three possibilities were referred to by Saccheri as the hypothesis
of the acute angle, the hypothesis of the right angle, and the hypothesis of the
obtuse angle. The plan of the work was to show that the assumption of
either the hypothesis of the acute angle or the hypothesis of the obtuse
angle would lead to a contradiction. Then, by reductio ad absurdum, the
hypothesis of the right angle must hold, and this hypothesis, Saccheri
showed, carried with it a proof of the parallel postulate. Tacitly assuming,
as in fact did Euclid, the infinitude of the straight line, Saccheri readily
eliminated the hypothesis of the obtuse angle, but the case of the hypothesis
of the acute angle proved to be much more difficult. After painstakingly
obtaining many of the now classical theorems of so-called non-Euclidean
geometry, Saccheri lamely forced into his development an unconvincing
contradiction involving hazy notions about infinite elements. Had he not
seemed so eager to exhibit a contradiction here, but rather had admitted
his inability to find one, Saccheri would today unquestionably be credited
with the discovery of non-Euclidean geometry. It seems that shortly after
the publication of Saccheri’s little work, it was suddenly removed from the
market, with the result that Saccheri’s efforts had little effect on his con-
temporaries.

Thirty-three years after Saccheri’s publication, Johann Heinrich Lambert
(1728-1777) of Germany wrote a similar investigation entitled Die Theorie
der Parallellinien, which, however, was not published until eleven years after
his death. Lambert chose a quadrilateral containing three right angles (half
of a Saccheri quadrilateral) as his fundamental figure, and considered three
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hypotheses according as the fourth angle is acute, right, or obtuse. He went
considerably beyond Saccheri in deducing propositions under the hypotheses
of the acute and obtuse angles. Thus, with Saccheri, he showed that in the
three hypotheses the sum of the angles of a triangle is less than, equal to,
or greater than two right angles respectively, and then, in addition, that
the deficiency below two right angles in the hypothesis of the acute angle,
or the excess above two right angles in the hypothesis of the obtuse angle,
is proportional to the area of the triangle. He observed the resemblance of
the geometry following from the hypothesis of the obtuse angle to spherical
geometry, where the area of a triangle is proportional to its spherical excess,
and conjectured that the geometry following from the hypothesis of the
acute angle could perhaps be verified on a sphere of imaginary radius. The
hypothesis of the obtuse angle was eliminated by making the same tacit
assumption as had Saccheri, but his conclusions with regard to the hypothesis
of the acute angle were indefinite and unsatisfactory, which, indeed, was the
reason his work was never published during his lifetime.

A third distinguished effort to establish Euclid’s parallel postulate by the
reductio ad absurdum method was essayed, over a long period of years, by
the eminent Italian-French analyst Adrien-Marie Legendre (1752-1833). He
began anew and considered three hypotheses according to whether the sum
of the angles of a triangle is less than, equal to, or greater than two right
angles. Tacitly assuming the infinitude of a straight line, he was able to
eliminate the third hypothesis, but, although he made repeated attempts,
he could not dispose of the first hypothesis. These various endeavors appeared
in the successive editions of his very popular Eléments de géométrie,* which
ran from a first edition in 1794 to a twelfth in 1823. Legendre perhaps holds
the record for persistence in attempting to prove the famous postulate.
The simple and straightforward style of his proofs, widely circulated because
of their appearance in his Eléments, and his high eminence in the world of
mathematics, created marked popular interest in the problem of the parallel
postulate.

It is no wonder that no contradiction was found under the hypothesis
of the acute angle, for, as we shall show later, it is now known that the
geometry developed under this hypothesis is as consistent as Euclidean
geometry; that is, the parallel postulate is independent of the remaining
postulates and cannot be deduced from them. Of course there are theorems
in the new geometry which contradict theorems in Euclidean geometry, but
there apparently are no two theorems in the new geometry which contradict

* This work is an attempted pedagogical improvement of Euclid’s Elements made by
considerably rearranging and simplifying the propositions. The work won high regard in
continental Europe and was so favorably received in the United States that it became the
prototype of the elementary geometry textbooks in this country. The first English trans-
lation was made in the United States in 1819 by John Farrar of Harvard University.
The next English translation was made in 1824 by the famous Scottish litterateur, Thomas
Carlyle, who early in life was a teacher of mathematics. Carlyle’s translation ran through
33 American editions.
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one another. The first to suspect this fact were Karl Friedrich Gauss (1777-
1855) of Germany, Janos Bolyai (1802-1860) of Hungary, and Nicolai
Ivanovitch Lobachevsky (1793-1856) of Russia. These men approached the
subject through the Playfair form of the parallel postulate by considering
the three possibilities: Through a given point not on a given line can be
drawn more than one, or just one, or no line parallel to a given line. These
situations are equivalent, respectively, to the hypotheses of the acute, the
right, and the obtuse angles. Again assuming the infinitude of a straight line,
the third case was easily eliminated. Suspecting, in time, a consistent geometry
under the first possibility, each of these three mathematicians independently
carried out extensive geometric and trigonometric developments of the
hypothesis of the acute angle.

Gauss was, without doubt, the first to reach penetrating conclusions
concerning the hypothesis of the acute angle, but since throughout his life
he failed to publish anything on the matter, the honor of discovering this
particular non-Euclidean geometry must be shared with Bolyai and Lobachev-
sky. Bolyai published his findings in 1832 in an appendix to a mathematical
work of his father. Later it was learned that Lobachevsky, separated from
the rest of the scientific world by barriers of distance and language, had
published similar findings as early as 1829-30. Because of Lobachevsky’s
priority in publishing, the geometry of the hypothesis of the acute angle
has come to be called Lobachevskian geometry.

The actual independence of the parallel postulate from the other postulates
of Euclidean geometry was not unquestionably established until consistency
proofs of the hypothesis of the acute angle were furnished. These were now
not long in coming and were supplied by Eugenio Beltrami, Arthur Cayley,
Felix Klein, Henri Poincaré, and others. The method was to set up a model
within Euclidean geometry so that the abstract development of the hypothesis
of the acute angle could be given a Euclidean interpretation in the model.
Then any inconsistency in the non-Euclidean geometry would imply a cor-
responding inconsistency in Euclidean geometry. We shall consider such a
model, due to Poincaré, in the next chapter.

We have seen that the hypothesis of the obtuse angle was discarded by
all who did research in this subject because it contradicted the assumption
that a straight line is infinite in length. Recognition of a second non-Euclidean
geometry, based on the hypothesis of the obtuse angle, was not fully achieved
until some years later, when Bernhard Riemann (1826-1866), in his famous
probationary lecture of 1854, discussed the concepts of boundlessness and
infiniteness. With the difference between these concepts clarified, one can
realize an equally consistent geometry satisfying the hypothesis of the obtuse
angle if Euclid’s Postulates 1, 2, and 5 are modified to read:

1’. Two distinct points determine at least one straight line.

2’. A straight line is boundless.
5’. Any two straight lines in a plane intersect.
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Actually, the modified statements (1°) and (2') are precisely Euclid’s first
two postulates taken at their face value; though Euclid meant two distinct
points to determine one and only one straight line, and though he meant
straight lines to be infinite, he never really asserted this much in his postulates.

Riemann’s lecture inaugurated a second period in the development of
non-Euclidean geometry, a period characterized by the employment of the
methods of differential geometry rather than the previously used methods
of elementary synthetic geometry. To this lecture we owe a considerable
generalization of the concept of space which has led, in more recent times, to
the extensive and important theory of abstract spaces; some of this theory
has found application in the physical theory of relativity.

Since the discovery of the two non-Euclidean geometries which result
from the hypotheses of the acute and obtuse angles, other nontraditional
geometries have been invented. Indeed, Riemann was the originator of a
whole class of nontraditional geometries. These have received intensive study
in recent times and are referred to as Riemannian geometries. Another non-
traditional geometry is one devised by Max Dehn in which the Postulate of
Archimedes is suppressed; such a geometry is referred to as a non-Archi-
medean geometry. The invention of these new geometries not only liberated
geometry from its traditional Euclidean mold, but, as we shall see in the
next chapter, considerably modified former conceptions of mathematics in
general and led to a profound study of the foundations of the subject and
to a further development of the axiomatic method.

The deductive consequences of the Euclidean postulational basis with the
parallel postulate extracted constitute what is called absolute geometry; it
contains those propositions which are common to both Euclidean and
Lobachevskian geometry. Among these common propositions are the first
twenty-eight propositions of Euclid’s Book I. The reader will note that in
Appendix I, where all forty-eight propositions of the first book of Euclid’s
Elements are listed, the first twenty-eight are, for convenience, separated
from the remaining twenty. When working in Lobachevskian geometry, the
student may safely appeal to any of these first twenty-eight propositions.

PROBLEMS

1. Show that Playfair’s Postulate and Euclid’s fifth postulate are equivalent.
(One may use any of Euclid’s first 28 propositions.)

2. Prove that each of the following statements is equivalent to Playfair’s Postulate:
(a) If a straight line intersects one of two parallel lines, it will intersect the
other also.

(b) Straight lines which are parallel to the same straight line are parallel to
one another.

3. Show that Playfair’s Postulate and the statement, ‘“ The sum of the angles of a
triangle is always equal to two right angles,” are equivalent.
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4.

10.

Find the fallacy in the following * proof,” given by B. F. Thibaut (1809), of
Euclid’s fifth postulate: Let a straightedge be placed with its edge coinciding
with side CA of a triangle ABC. Rotate the straightedge successively about the
three vertices A, B, C, in the direction ABC, so that it coincides in turn with
AB, BC, CA. When the straightedge returns to its original position it must have
rotated through four right angles. But the whole rotation is made up of three
rotations equal to the exterior angles of the triangle. It now follows that the
sum of the angles of the triangle must be equal to two right angles, and from
this follows Euclid’s parallel postulate.

. Find the fallacy in the following ‘ proof,” given by J. D. Gergonne (1812),

of Euclid’s fifth postulate: Let PA and OB, lying in the same plane and on the
same side of PQ, be perpendicular to PQ. Then PA and QB are parallel. Let
PG be the last ray through P, and lying within angle Q PA, which intersects Q B.
Produce QB to a point K beyond the point of intersection of PG with OB,
and draw PK. It follows that PG is not the last ray through P which meets QB,
and therefore all rays through P and lying within angle QPA must meet QB.
Thus through P there is only one line parallel to line OB, and Euclid’s fifth
postulate follows.

. Find the fallacy in the following ‘ proof,” given by J. K. F. Hauff (1819),

of Euclid’s fifth postulate: Let AD, BE, CF be the altitudes of an equilateral
triangle ABC, and let O be the point of concurrency of these altitudes. In right
triangle ADC, acute angle CAD equals one half acute angle ACD. Therefore,
in right triangle AEO, acute angle OAFE equals one half acute angle AOE.
A similar treatment holds for each of the six small right triangles of which
AEO is typical. It now follows that the sum of the angles of triangle ABC is
equal to one half the sum of the angles about O, that is, equal to two right
angles. But it is known that the existence of a single triangle having the sum of
its angles equal to two right angles is enough to guarantee Euclid’s fifth postulate.

. Show that Propositions I 27 and I 28 guarantee, under the assumption of the

infinitude of straight lines, the existence of at least one line through a given
point parallel to a given line not passing through the point.

. Prove, by simple congruence theorems (which do not require the parallel

postulate), the following theorems about Saccheri quadrilaterals:

(a) The summit angles of a Saccheri quadrilateral are equal to each other.
(b) The line joining the midpoints of the base and summit of a Saccheri
quadrilateral is perpendicular to both the base and the summit.

(c) If perpendiculars are drawn from the extremities of the base of a triangle
upon the line passing through the midpoints of the two sides, a Saccheri
quadrilateral is formed.

(d) The line joining the midpoints of the equal sides of a Saccheri quadrilateral
is perpendicular to the line joining the midpoints of the base and summit.

. Show that a Lambert quadrilateral can be regarded as half a Saccheri quadri-

lateral.

A spherical degree for a given sphere is defined to be any spherical area which
is equal to (1/720)th of the entire surface of the sphere. The spherical excess
of a spherical triangle is defined as the excess, measured in degrees of angle,
of the sum of the angles of the triangle above 180°.

7.1 Historical Background
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(a) Show that the area of a lune whose angle is n° is equal to 2n spherica.
degrees.

(b) Show that the area of a spherical triangle, in spherical degrees, is equal to
the spherical excess of the triangle.

(c) Show that the area A4 of a spherical triangle of spherical excess E° is given by

A = mrE°[180°,

where r is the radius of the sphere. This shows that, for a given sphere, the
area of a spherical triangle is proportional to its spherical excess.

11. Fill in the details of the following proof of Legendre’s First Theorem: * The
sum of the three angles of a triangle cannot be greater than two right angles.”
Show that the proof assumes the infinitude of the straight line.

Suppose that the sum of the angles of a triangle ABC is 180° + 6, and that
angle CAB is not greater than either of the other angles. Join 4 to D, the mid-
point of BC, and produce AD its own length to E. Show that triangles BDA
and CDE are congruent; hence that the sum of the angles of triangle AEC is
also equal to 180° + 8. One of the angles CAE and CEA is not greater than
3 X CAB. Apply the same process to triangle AEC, obtaining a third triangle
whose angle-sum is 180° + 6 and one of whose angles is not greater than
(3)*> X CAB. By applying the construction n times, a triangle is reached whose
angle-sum is 180° + 6 and one of whose angles is not greater than (4)" X CAB.
But (by the Postulate of Archimedes) there exists an integer k such that k6 >
X CAB. Choose n so large that 2" > k. Then 8 > (3)" ¥ CAB, and the sum of
two of the angles of the last triangle must be greater than 180°. But this con-
clusion contradicts Proposition I 17.

12. In one effort to eliminate the hypothesis of the acute angle, Legendre tried to
obtain, under this hypothesis, a triangle containing a given triangle at least
twice. He proceeded as follows. Let ABC be any triangle such that angle A is
not greater than either of the other two angles. Construct on side BC a triangle
BCD congruent to triangle ABC, with angle DCB equal to angle B, angle DBC
equal to angle C, and D on the opposite side of BC from A. Through D draw
any line cutting AB and AC produced in E and F, respectively. Then triangle
AEF contains triangle ABC at least twice.

(a) Show that this construction assumes that through a point within a given
angle less than 60° there can always be drawn a straight line intersecting both
sides of the angle. (This, we have seen, is equivalent to the fifth postulate.)
(b) If the construction above had been independent of the fifth postulate, how
would it have eliminated the hypothesis of the acute angle?

13. Assuming Legendre’s First Theorem (see Problem 11, above), prove the follow-
ing sequence of theorems credited to Legendre.
(a) If the sum of the angles of a triangle is equal to two right angles, then the
same is true of any triangle obtained from the given triangle by drawing a
cevian line through one of its vertices.
(b) If there exists a triangle with the sum of its angles equal to two right angles,
then one can construct an isosceles right triangle having the sum of its angles
equal to two right angles and its legs greater in length than any given line
segment.
(c) Legendre’s Second Theorem. If there exists a single triangle having the sum
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of its angles equal to two right angles, then the sum of the angles of every triangle
will be equal to two right angles.
(d) If there exists a single triangle having the sum of its angles less than two
right angles, then the sum of the angles of every triangle is less than two right
angles.

14. Show that the assumption of the existence of noncongruent similar triangles is
equivalent to the fifth postulate.

15. Show that the assumption of the existence of a pair of straight lines which are
everywhere equally distant from one another is equivalent to the fifth postulate.

7.2 PARALLELS AND HYPERPARALLELS

We proceed, in this and the following seven sections, to develop some of
the geometry of the Lobachevskian plane. As stated at the end of the previous
section, free use will be made of the first twenty-eight propositions of
Euclid’s FElements. These twenty-eight propositions are independent of the
parallel postulate and therefore hold in Lobachevskian geometry as well as
in Euclidean geometry. The reader will find these propositions listed in the
Appendix.

In place of Euclid’s parallel postulate we make the following assumption:

7.2.1 THE LOBACHEVSKIAN PARALLEL POSTULATE. If P is a point not on
the line AB (see Figure 7.2a) and if Q is the foot of the perpendicular from

Figure 7.2a

A / 0 B

z

P on AB, there are two rays PX, PY from P, not in the same line and not
intersecting AB, and such that any ray PZ from P and lying within the ¥ XPY
containing PQ intersects AB.*

We now proceed with the development.
7.2.2 THEOREM. In Figure 7.2a, any line through P and not passing within
the ¥ XPY containing PQ does not intersect line AB.

For if such a line did intersect line 4B, then ray PX or ray PY would
have to intersect line 4B.

* For convenience in our brief treatment we have chosen a stronger form of the
Lobachevskian parallel postulate than is really needed.
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7.2.3 DerINITIONS. We shall call the lines PX and PY of Figure 7.2a
the parallels through P to line AB. Directed line PX is said to be parallel
to directed line AB, and PY is said to be parallel to BA. Lines through P
and not passing within the ¥ XPY containing PQ will be called hyper-
parallels through P to line AB.

7.2.4 THEOREM. If Q is the foot of the perpendicular from point P on line
AB and if PX and PY are the parallels through P to line AB, then angles
XPQ and YPQ are equal acute angles.

Suppose X YPQ > X XPQ. Lay off (see Figure 7.2b) x MPQ = < XPQ.

S P R
Y X
Figure 7.2b M
L
A N 0 K B

Then PM lies within < YPQ, and so must intersect line 4B in a point N.
Mark off on 4B, on the side of Q opposite N, QK = QN, and draw PK.
Then triangles NPQ and KPQ are congruent (by I 4) and X KPQ = x MPQ
= X XPQ. Thus PX and PK coincide. But this is impossible, since PX does
not intersect AB. Therefore ¥ YPQ % X XPQ. We may similarly show
that X XPQ % « YPQ. It follows that ¥ YPQ = X XPQ.

Now angles YPQ and XPQ are not right angles, for if they were then
PY and PX would lie on the same line, which they do not. Angles YPQ
and XPQ are not obtuse angles, for if they were then line SPR through P
and perpendicular to PQ would pass within the ¥ XPY containing PQ, and
therefore would have to intersect line 4B, which it does not (by I 28). It
follows that angles YPQ and XPQ are acute angles.

7.2.5 COROLLARY. There are infinitely many hyperparallels to a line AB
through a point P not on AB.

7.2.6 DEeFINITION. Angle XPQ (or angle YPQ) in Figure 7.2b is called
the angle of parallelism at P for line AB.

7.2.7 TueoreMm. If PX is parallel to AB and R is any point on PX such
that P and R are on the same side of X, then RX is parallel to AB. (This is
called the transmissibility property of parallelism.)

Case 1 (R between P and X): Draw PQ and RS (see Figure 7.2c) per-
pendicular to AB. Let RT be any ray from R and lying within ¥SRX.
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Figure 7.2c
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Take any point U on ray RT and on the same side of 4B as P. Draw PU.
Then PU must cut 4B in a point M. It follows that RU must cut SM, and
RX is parallel to AB.

Case 2 (P between R and X): The proof is the same as that of Case 1
except we take U as any point on the backward extension of ray RT (see
Figure 7.2d).

Figure 7.2d

7.2.8 TueoreM. If CD is parallel to AB, then AB is parallel to CD.
(This is called the symmetry property of parallelism.)

Figure 7.2e

Referring to Figure 7.2¢, take P, any point on CD, and draw PQ perpendic-
ular to 4B and QR perpendicular to CD. By I 16 it follows that R must be

7.2 Parallels and Hyperparallels
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on ray PD. Let QF be any ray through Q and lying within < RQB. Draw
PF perpendicular to line QFE. Then, again by I 16, F lies on ray QF. On
PQ mark off PG = PF. By I 18, G lies between P and Q. Draw GH per-
pendicular to PQ. Lay off ¥ GPI = x FPD and produce PI to cut ABin J.
Since GH cuts side PQ of triangle PQJ, but does not (by I 28) cut side QJ,
it must cut side PJ at some point K. On PD mark off PL = PK and draw FL.
Since triangles PGK and PFL are congruent (by I 4), it follows that < PFL
is a right angle. But % PFE is a right angle. Hence QEF falls on FL, and thus
cuts PD in L. It now follows that 4B is parallel to CD. (This proof is due
to Lobachevsky.)

7.2.9 TueoreM. If AB and CD are parallel to EF, then AB is parallel
to CD. (This is called the transitivity property of parallelism.)

Case 1 (EF between AB and CD): Referring to Figure 7.2f, connect a

Figure 7.2f

point A’ on AB to a point C' on CD and let A'H be any ray through A4’
and lying within X C’A’B. Since AB is parallel to EF, A'H cuts EF in a
point I. Draw C'I. Since EF is parallel to CD, A'I produced must cut CD.
Since AB does not cut CD (if it did, it would have to cut EF), but every
ray A'H lying within ¥ C’4’B does cut CD, it follows that AB is parallel
to CD.

Case 2 (AB and CD on the same side of EF): Referring to Figure 7.2g,
let GH be the parallel to CD through a point G of AB. Then, by Case 1,

A
G
c B
 » H
D
E F
Figure 7.2g
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GH is parallel | to EF. 1t follows that AB coincides with GH, and thus 4B
is parallel to CD. (This proof is due to Gauss.)

7.3 LIMIT TRIANGLES

Very useful for the further development of the geometry of the
Lobachevskian plane is the concept of a “limit triangle.”

7.3.1 DerINITIONS. A figure (see Figure 7.3a) consisting of two parallel

Figure 7.3a

rays and the line segment connecting the origins of the rays is called a limit
triangle. The segment connecting the origins of the rays is called the finite
side of the limit triangle, and the angles at the extremities of the finite side
are called the angles of the limit triangle.

7.3.2 THEOREM. An exterior angle of a limit triangle is greater than the
opposite interior angle.

Suppose (see Figure 7.3b) ¥ CAX < £ CBY. Lay off xCAD = xCBY.

Figure 7.3b

E

Then AD lies within ¥ BAX, and therefore must meet BY in some point E.
Then, in triangle A BE, exterior angle CAE is equal to opposite interior angle
ABE. But this contradicts I 16. It follows that xCAX<« xCBY.

Suppose (see Figure 7.3¢) ¥ CAX = X CBY. Let L be the midpoint of
AB. Draw NLM perpendicular to AX. Then triangles LAM and LBN are
congruent (by I 26). It follows that ¥ BNL = X AML = a right angle. Then
X AML is the angle of parallelism at M for line BY. But this is impossible,

7.3 Limit Triangles
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Figure 7.3¢c

B N Y

since an angle of parallelism is acute. It follows that xCAX # x CBY.
We now conclude that < CAX > X CBY, and the theorem is estab-
lished.

7.3.3 THEOREM. If, in two limit triangles, the finite sides are equal, and
an angle of one is equal to an angle of the other, then the two remaining angles
are also equal.

Referring to Figure 7.3d, let AB= A'B’ and ¥4 = ¥ A’. Suppose ¥XB>

A A
D D’

B Y B’ Y’
Figure 7.3d

¥B'. Lay off XxABC = £ B’. Then BC must intersect AX in some point D.
Mark off on 4’X’, A'D’ = AD, and draw B’'D’. Then triangles BAD and
B’A'D’ are congruent (by I 4), and < A’B’D’' = ¥ ABD = & B’. But this is
impossible. It follows that B & B’. Similarly, ¥xB’*» XB. That is,
XB= &B.

7.3.4 THEeOREM. If, in two limit triangles, the two angles of one are equal
to the two angles of the other, then the two finite sides of the triangles are
also equal.

Referring to Figure 7.3e, suppose AB > A’B’. Mark off AC = A’B’ and
let CZ be the parallel through C to AX and BY. By Theorem 7.3.3, ¥ ACZ
= ¥XB' = xB. But this contradicts Theorem 7.3.2. It follows that
AB 3 A'B’. Similarly, A'B’ % AB. Therefore AB= A'B'.

7.3.5 THEOREM. The angle of parallelism at P for a line AB depends only
on the distance PQ of P from AB, and it decreases as PQ increases.
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Figure 7.3e

This is an immediate consequence of Theorems 7.3.3 and 7.3.2.

7.3.6 NoraTion. If P (see Figure 7.3f) is at a distance /4 from line AB,

T (k)

Figure 7.3f ha

A B

following Lobachevsky we denote the angle of parallelism at P for line AB
by the symbol II(#).
We shall later show that I1(k) = 2 arc tan e " if the unit of length is chosen

as the distance corresponding to the angle of parallelism o« = 2 arc tan e !,

The relationship between the distance /4 of a point P from a line AB and
the angle II(#) of parallelism at P for line AB reveals an interesting feature
of Lobachevskian geometry that is not possessed by Euclidean geometry.
In both Euclidean and Lobachevskian geometry, angles possess a natural
unit of measure (the right angle, or some given fractional part of a right
angle) which is capable of geometrical definition and which, if ever lost,
could be geometrically reconstructed. The fact that there exists a unit of
angle having a structural connection of this sort with the geometry is ex-
pressed by mathematicians by saying that angles are absolute in the two
geometries. Now in Euclidean geometry, lengths clearly are not absolute;
there is no natural unit of length structurally connected with the geometry.
Lengths must be measured in terms of some arbitrarily chosen unit of length,
and if this unit of length becomes expunged it cannot be geometrically
reconstructed. Mathematicians express this fact by saying that in Euclidean
geometry lengths are relative. The interesting feature of Lobachevskian
geometry is that not only angles, but lengths as well, are absolute. For to
each angle IT(4) of parallelism is associated a definite distance A, and thus
one can obtain from a unit of angular measure a corresponding unit of
linear measure.

7.3 Limit Triangles
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PROBLEMS

1. If PX and PY are both parallel to line AB, show that the bisector of X XPY
is perpendicular to AB.

2. A limit triangle is said to be isosceles if its two angles are equal. Prove that if
the finite sides of two isosceles limit triangles are equal, then the angles of one
limit triangle are equal to those of the other.

3. Prove that the sum of the angles of a limit triangle is always less than two right
angles.

4. Prove that if a transversal cuts two lines, making the sum of the interior angles
on the same side equal to two right angles, then the two lines are hyperparallel
to one another.

5. Given four segments AC, BD, A’C’, B'D’. If AC is parallel to_B—D, AB = A’B’,
£BAC = XB'A'C’, and XABD = X A'B’'D’, prove that A’C’ is parallel to
B'D’.

6. Prove that the perpendicular bisector of the finite side of an isosceles limit
triangle is parallel to the two parallel sides of the limit triangle, and that any
point on the perpendicular bisector is equally distant from the parallel sides
of the limit triangle.

7. If the perpendicular bisector of the finite side of a limit triangle is parallel to
the parallel sides of the limit triangle, show that the limit triangle is isosceles.

8. If in two limit triangles, an angle of the first is equal to an angle of the second,
but the finite side of the first is greater than the finite side of the second, prove
that the other angle of the first is smaller than the other angle of the second.

9. (a) Express a distance & in terms of its associated angle of parallelism. (b)
Show that as 4 increases from 0 to oo, the corresponding angle of parallelism
decreases from 90° to 0°. (c) Show that, “in the small,” Lobachevskian ge-
ometry approximates Euclidean geometry.

10. (a) Why does the Bureau of Standards preserve a standard unit of length but
no standard unit of angle? (b) In spherical geometry (that is, geometry on the
surface of a given sphere) are lengths absolute or relative?

7.4 SACCHERI QUADRILATERALS AND THE ANGLE-SUM
OF A TRIANGLE

We continue our study of Lobachevskian plane geometry with an examination
of some properties of Saccheri quadrilaterals and of some important con-
sequences of those properties.

7.41 DEerINITIONS. A quadrilateral ABCD in which <4 = £ B=90°
and AD = BC is called a Saccheri quadrilateral. AB is called the base, DC

the summit, and angles D and C the summit angles.

7.4.2 THEOREM. The summit angles of a Saccheri quadrilateral are equal
and acute.
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Figure 7.4a

Referring to Figure 7.4a, draw the diagonals AC and BD. Since triangles
DAB and CBA are congruent (by I 4), we have AC = BD. It then follows
that triangles ADC and BCD are congruent (by I 8), whence ¥xADC =
X BCD. To show that these angles are acute, let CX and DY be the parallels
through C and D to AB. By Theorem 7.3.2, xECX> XEDY. But, by
Theorem 7.3.5, XxBCX = X ADY. It follows that ¥ BCE > X ADE. But
X ADE = ¥ BCD. Hence ¥BCD is acute.

7.4.3 THEOREM. The line joining the midpoints of the base and summit
of a Saccheri quadrilateral is perpendicular to both of them.

Let M (see Figure 7.4b) be the midpoint of base 4B and N the midpoint

D N C
Ht Ht
Figure 7.4b
| 4 f B
A M B

of summit DC. Draw MC, MD. Since triangles DAM and CBM are con-
gruent (by I 4), we have MD = MC. We then have (by I 8) triangle DNM
congruent to triangle CNM, whence X DNM = X CNM = 90°. Similarly,
by drawing NA, NB, we can prove that x AMN = ¥ BMN = 90°.

7.4.4 THEOREM. Two Saccheri quadrilaterals are congruent if they have
equal summits and equal summit angles.

Suppose, in Figure 7.4c, AD > A'D’. On DA and CB mark off DR =
D'A’ and CS'= C'B’. Draw RS. Then RSCD is congruent to A'B'C'D'.
It follows that ¥ ARS = X BSR =90°, which contradicts Theorem 7.4.2
when applied to Saccheri quadrilateral ABSR. This proves the theorem.

7.45 THEOREM. The sum of the angles of any triangle is less than two
right angles.

7.4  Saccheri Quadrilaterals and the Angle-Sum of a Triangle
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Figure 7.4c

Let L, M (see Figure 7.4d) be the midpoints of the sides AC, BC of a
triangle ABC. Let AD, BE, CF be perpendiculars from 4, B, C on line LM.
By I 26, triangles ADL and CFL and triangles BEM and CFM are congruent.
It follows that AD = CF = BE, and DEBA is a Saccheri quadrilateral with
base DE. Therefore ¥ DAB and ¥ ABE are acute angles. But ¥ DAB =
<):DAL+ <):LAB XFCL + xLAB, and % ABE = XABM + X MBE =
X ABM + x MCF. Consequently  180° > XDAB + ¥ ABE = XLAB +
XFCL + xMCF+ xABM = xA + ¥xC + XB.

C C
D L M E D L E
) F 0 u) = M F
A B 4 B

Figure 7.4d

7.4.6 DEerINITION. The deficiency of the sum of the angles of a triangle
below two right angles is called the defect of the triangle.

7.4.7 THEOREM. Two triangles are congruent if the three angles of one
are equal to the three angles of the other.

In Figure 7.4e, let xA= xA', xB= B, xC= xC’, and suppose
the triangles are not congruent. Then AB # A’B’. Suppose, without loss of
generality, AB> A'B’. On AB and AC mark off AD and AE equal to A'B’
and A’C’ respectively. Now E must fall on C, on AC produced, or between
A and C.If Efalls on C, then A'C’ = AC, and the triangles are congruent
(by I 26), which contradicts our supposition that they are not. If E falls on
AC produced we have a situation contradicting I 16. Thus E must fall
between A and C. It then follows that the sum of the angles of the quad-
rilateral BCED is four right angles. But this is impossible by Theorem 7.4.5,
inasmuch as a quadrilateral can be cut into two triangles. The theorem
now follows.
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Figure 7.4e
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7.4.8 REeMARK. Theorem 7.4.7 proves that in Lobachevskian geometry,
similar noncongruent figures cannot exist.

PROBLEMS
1. Prove that two Saccheri quadrilaterals with equal bases and equal summits are
congruent.

2. Prove that two Saccheri quadrilaterals with equal bases and equal summit
angles are congruent.

3. Prove that a quadrilateral with two right angles and the other two angles equal
is a Saccheri quadrilateral.

4. Prove that at least two angles of every triangle are acute.

5. Prove that the angle-sum of a convex polygon of » sides is less than n — 2
straight angles.

7.5 AREA OF A TRIANGLE

We now consider the concept of the area of a triangle in the Lobachevskian
plane; it will be seen to be intimately related to the excess of the triangle.
Appeal will be made to some of the early theorems in the previous chapter
on dissection theory.

7.56.1 THeorReM. If a triangle is divided into two subtriangles by a cevian
line, then the defect of the triangle is equal to the sum of the defects of the
two subtriangles.

Referring to Figure 7.5a we have

defect ABC = 180° — (a; + &, + B, + 71)
=360° — (a; + By + 71 + %2 + B2 + 72)
= [180° — (2t; + By + 71)] + [180° — (2, + B + 7,)]
= defect ADC + defect ABD.

7.5.2 THEOREM. If a triangle is dissected into subtriangles in any way,
the defect of the triangle is equal to the sum of the defects of the subtriangles.

7.5 Area of a Triangle
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By additional cuts, the given dissection can be converted into a cevian
dissection (see Theorem 5.2.9). The theorem now follows from Theorem
7.5.1.

7.5.3 THEOREM. If two triangles T, and T, are congruent by addition,
then they have equal defects.

Since T; = T, (+), it follows that T, and T, can be dissected into the
same set of subtriangles. Therefore, by Theorem 7.5.2, T, and T, have
equal defects.

7.5.4 LEMMA. Any triangle is congruent by addition to a Saccheri quad-
rilateral whose summit is equal to any given side of the triangle and each of
whose summit angles is equal to half the sum of the angles of the triangle.

Denote the triangle by ABC and let AB be the given side. Let L and M
be the midpoints of sides AC and BC respectively, and let D, E, F be the
feet of the perpendiculars dropped from 4, B, C on line LM. Then, as in
the proof of Theorem 7.4.5, DEBA is a Saccheri quadrilateral with summit
AB and with each summit angle equal to half the sum of the angles of the
triangle. We leave it to the reader to show that triangle ABC is congruent
by addition to the Saccheri quadrilateral DEBA. There are several cases
to consider, two of which are illustrated in Figure 7.4d.

7.56.56 THEOREM. Two triangles with a side of one equal to a side of the
other and having equal defects are congruent by addition.

Let the triangles be ABC and A'B'C’, where AB = A'B’. By Lemma 7.5.4,
triangle ABC is congruent by addition to a Saccheri quadrilateral of summit
AB and summit angles each equal to half the angle-sum of triangle 4BC.
Similarly, triangle 4'B’C’ is congruent by addition to a Saccheri quadrilatera
of summit 4’B’ and summit angles each equal to half the angle-sum of
triangle 4'B’C’. By Theorem 7.4.4, the two Saccheri quadrilaterals are
congruent. It follows (see Theorem 5.1.3) that triangle ABC is congruent
by addition to triangle A'B'C’.
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7.5.6 THEOREM. The line through the midpoint of one side of a triangle,
perpendicular to the perpendicular bisector of a second side, bisects the third
side.

A4
T
. M
Figure 7.5b o F £ N
[ N
B R C

Let E (see Figure 7.5b) be the midpoint of side AC, and RT the per-
pendicular bisector of side BC, of a triangle ABC. Draw line / through E
perpendicular to RT and cutting RT in S. But the line through the mid-
points F and E of AB and AC is perpendicular to RT (by Theorem 7.4.3
applied to Saccheri quadrilateral MNCB). It follows that / coincides with
FE, or that [ bisects side AB.

7.5.7 THEOREM. Any two triangles with the same defect are congruent by
addition.

A

Figure 7.5¢

Let ABC, A'B'C’' (see Figure 7.5c) be two triangles with the same defect.
It has already been proved (Theorem 7.5.5) that if a side of one triangle
is equal to a side of the other, the two triangles are congruent by addition.
Assume, then, that no side of one is equal to a side of the other; in particular,
assume A'C’ > AC. Join the midpoints F, E of AB, AC and draw perpen-
diculars AL, BM, CN to line FE. Mark on line FE a point E” such that
CE" = (A'C’)/2. This can be done since (4'C’)/2> CE =z CN. Draw CE"
and extend it to 4” so that E"4” = CE". Draw A”B to cut line FE in F".

7.5 Area of a Triangle
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Since (by Theorem 7.4.3) FE is perpendicular to the perpendicular bisector
of BC, and passes through the midpoint E” of CA”, it follows (by Theorem
7.5.6) that F” is the midpoint of BA”. Now triangles ABC, A"BC have the
same angle-sum (namely X MBC + X NCB) and a common side BC; they
are therefore congruent by addition. But triangles A”"BC and A'B'C’ also
have the same angle-sum, and side CA” of the one is equal to side C'A4’
of the other; they are therefore congruent by addition. It now follows (by
Theorem 5.1.3) that triangles ABC and 4'B’C’ are congruent by addition.

7.5.8 REMARK. We naturally define two triangles which are congruent
by addition to be triangles of equal area. We may then take the defect of
a triangle as a measure of its area, since the essential properties of a measure
of area are that two triangles with the same area have the same measure,
that two triangles with the same measure have the same area, and that the
measure of a whole is the sum of the measures of its parts. Hence we may
say, in Lobachevskian geometry, that the area of a triangle is proportional
to its defect.

PROBLEMS

1. Show that Theorems 5.1.3 and 5.2.9 are theorems of absolute geometry.

2. Complete the proof of Lemma 7.5.4.

3. If, in quadrilateral ABCD, ¥ A = ¥ B = 90°, prove that ¥x C = X Daccording
as AD = BC.

4. A Lambert quadrilateral is a quadrilateral possessing three right angles.

(a) Prove that the fourth angle of a Lambert quadrilateral is acute.
(b) Prove that the sides adjacent to the fourth angle of a Lambert quadrilateral
are greater than their respective opposite sides.

5. Which is greater, the base or the summit of a Saccheri quadrilateral?

6. Prove that the line joining the midpoints of the equal sides of a Saccheri quadri-
lateral is perpendicular to the line joining the midpoints of the base and summit,
and that it bisects both diagonals of the quadrilateral.

7. Prove that the segment connecting the midpoints of two sides of a triangle is less
than half the third side. (This fact can be used as the characteristic postulate in
a development of Lobachevskian geometry.)

7.6 IDEAL AND ULTRA-IDEAL POINTS

We have seen, in plane Euclidean geometry, the convenience of introducing
certain ideal points—the so-called points at infinity. By this device, many
theorems which formerly had exceptions became universally true. A similar,
but more complicated, situation exists in plane Lobachevskian geometry.
Whereas in plane Euclidean geometry we have only two types of pairs of
lines, namely intersecting pairs and parallel pairs, in plane Lobachevskian
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geometry we have three types of pairs of lines—intersecting pairs, parallel
pairs, and hyperparallel pairs. To banish exceptional cases to certain theo-
rems in plane Lobachevskian geometry we must try to introduce a class of
fictitious points in which pairs of parallel lines will be said to meet, and
another class of fictitious points in which pairs of hyperparallel lines will
be said to meet. These two classes of fictitious points will be known as ideal
and ultra-ideal points, respectively. We must first establish an important
theorem concerning a pair of hyperparallel lines; the proof we give is due
to David Hilbert (1862-1943), one of the world’s foremost mathematicians
during the first half of the twentieth century.

7.6.1 THeoREM. Two hyperparallel lines have one and only one common
perpendicular.

Referring to Figure 7.6a, let / and m be a pair of hyperparallel lines.

o M
’ i //LC)I
e
m in n Ol
C D L N H
Figure 7.6a

Select two points A and B on / and drop perpendiculars AC and BD on m.
If AC = BD, then CDBA is a Saccheri quadrilateral, and the line joining
the midpoints of 4B and CD will be perpendicular to both / and m (by
Theorem 7.4.3).

Suppose AC # BD and assume, without loss of generality, that AC > BD.
On CA mark off CE = DB. At E draw EF on the side of AC on which BD
lies and such that <X CEF = < DBA’, where A’ is on / on the side of B
opposite to A.

We now show that EF, if sufficiently produced, will cut / in a point K.
To accomplish this, consider rays CC’ and DD’ parallel to A4’. These rays
must lie within angles ACH and BDH respectively, where H is any point
on m on the side of D opposite to C. Since x HDD’ > ¥ HCC’ (by Theorem
7.3.2), a line CJ drawn such that £xJCH = ¥ D'DH must cut / in a point J.
Now figure FECJ is congruent to figure A'BDD’, whence EF is parallel to
CJ, and EF must intersect / in some point K between A4 and J.

Draw KL perpendicular to m. On / and m, on the side of BD opposite
to AC, mark off BM = EK and DN = CL; draw MN. By drawing CK and
DM we may easily prove triangle KEC congruent to triangle MBD (by 1 4),

7.6 Ideal and Ultra-ldeal Points

305



306

and then triangle KCL congruent to triangle MDN (by I 4), whence X DNM
= XCLK =90° and MN = KL. Thus LNMK is a Saccheri quadrilateral
and the line joining the midpoints of KM and LN is perpendicular to both
Il and m.

We have now shown that / and m have a common perpendicular. They
cannot have two common perpendiculars, for in that case there would result
a quadrilateral having four right angles, which is impossible.

7.6.2 REMARK. It is to be noted that not only does the argument above
prove the existence of a unique common perpendicular to / and m, but it
also supplies a method of constructing this common perpendicular. There
are many interesting construction problems in Lobachevskian geometry
which are by no means evident. The reader might like to try, for example,
to construct: (1) the parallels through a given point to a given line, (2) the
common parallel of two intersecting lines. Solutions to these problems would
permit us to construct I1(/) given A, and to construct A given I1(A).

7.6.3 DEFINITIONS AND NOTATION. We assign to each family of parallel
rays a common ideal point. We assign to each family of hyperparallel lines
all perpendicular to a common line a common wltra-ideal point. In general
we shall denote ideal and ultra-ideal points by upper case Greek letters, in
the latter case frequently attaching a subscript to denote the associated
common perpendicular line (see Figure 7.6b).

Figure 7.6b

Much of the information concerning ordinary, ideal, and ultra-ideal points
can be neatly summarized graphically as follows. Let us represent the
ordinary points of the Lobachevskian plane by points interior to a given
circle K of an extended Euclidean plane (see Figure 7.6¢), ideal points of the
Lobachevskian plane by points on circle K, and ultra-ideal points of the
Lobachevskian plane by the finite and infinite points outside circle K. Let
straight lines of the Lobachevskian plane be represented by straight lines
in the extended Euclidean plane which cut into the interior of circle K.
Let the line associated with an ultra-ideal point be the polar line of that
point with respect to circle K.
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Figure 7.6¢

In Figure 7.6c, lines m and n intersect in an ordinary point; lines / and m
intersect in an ideal point; lines p and g intersect in the ultra-ideal point
having line / as its associated line.

We observe that any two lines intersect in a point—ordinary, ideal, or
ultra-ideal. On the other hand, not every pair of points determines a line.
Two ordinary points determine a line; an ordinary and an ideal point deter-
mine a line; two ideal points determine a line; an ordinary point and an
ultra-ideal point determine a line. Two ultra-ideal points sometimes deter-
mine a line and sometimes do not; an ideal point and an ultra-ideal point
sometimes determine a line and sometimes do not. The first situation fails
to yield a line when the associated lines of the two ultra-ideal points * inter-
sect” or are ‘““parallel””; the second situation fails to yield a line when the
ideal point lies on the associated line of the ultra-ideal point.

It was Arthur Cayley (1821-1895) who called the locus of the ideal points
of a Lobachevskian plane the absolute of that plane. The above representa-
tion of the absolute of a Lobachevskian plane by a circle in an extended
Euclidean plane is, for the time being, to be regarded as simply a useful
device for easily recalling and summarizing much of the information about
the ordinary, ideal, and ultra-ideal points of the Lobachevskian plane. With
the development of a proper background, the model can be used to show
an interesting tie-up between Lobachevskian geometry and projective
geometry.

PROBLEMS

Verify, in the graphic model of the absolute, the following facts about the
Lobachevskian plane.

1. Two lines are perpendicular if and only if their representations in the model
are conjugate lines with respect to the absolute.

7.6 Ideal and Ultra-ldeal Points
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2. Through an ordinary point not on a given line there exist two lines parallel
to the given line.

3. Two lines have a common perpendicular if and only if they are hyperparallel.

4. The altitudes of a triangle are concurrent in an ordinary, ideal, or ultra-ideal
point.

5. The orthogonal projection of a line m on a nonparallel line # is an open segment
of line n.

6. It is possible to have an angle and an ordinary point within it such that no
line through the point will intersect both sides of the angle in ordinary points.

7. Given two hyperparallel lines a and b, there exist two intersecting lines ¢ and
d each parallel to both a and b, and two hyperparallel lines e and f each parallel
to both a and b.

8. In a limit triangle there is a line parallel to the parallel sides and perpendicular
to the finite side.
9. There exist four lines parallel to two given intersecting lines.

10. If two lines a and b intersect at an acute angle, there are two lines parallel to a
and perpendicular to b. If a and b intersect at a right angle, there is no line
parallel to a and perpendicular to b. If a and b are parallel, there is one line
parallel to a and perpendicular to . If a and b are hyperparallel, there are two
lines parallel to a and perpendicular to b.

11. Given two parallel lines, there exists a unique line parallel to each but in
opposite senses.

12. Given six lines 1, 2, 3, 4, 5, 6 such that 1 is parallel to 2,2to 3,3to 4,4 to 5,
5t0 6, 6 to 1. If no three of the lines are parallel to one another, and if the pairs
of lines 1 and 4, 2 and 5, 3 and 6 intersect, then the three points of intersection
are collinear.

13. Given six lines 1, 2, 3, 4, 5, 6 such that 1 is parallel to 2,2t0 3,3to 4,4 to 5,
5t0 6, 6 to 1. If no three of the lines are parallel to one another, and if the pairs
of lines 1 and 4, 2 and 5, 3 and 6 are hyperparallel, then their three common
perpendiculars are concurrent.

7.7 AN APPLICATION OF IDEAL AND ULTRA-IDEAL
POINTS

If we draw the three perpendicular bisectors of the sides of an ordinary
triangle, pairs of these perpendicular bisectors may be intersecting lines,
parallel lines, or hyperparallel lines. Without the convention of ideal and
ultra-ideal points, we cannot, then, say that the three perpendicular bisectors
of the sides of an ordinary triangle are concurrent. It is interesting, however,
that with the fictitious ideal and ultra-ideal points, the general theorem can
be stated. We now proceed to establish this general theorem, thereby illus-
trating the utility of the fictitious points.

7.7.1 THEOREM. The three perpendicular bisectors of the sides of an
ordinary triangle are concurrent.
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Case 1 (two of the perpendicular bisectors intersect in an ordinary point):
Suppose the perpendicular bisectors of 4B and BC (see Figure 7.7a) inter-
sect in an ordinary point O. Connect O with A, B, C. Then triangles AC'O

Figure 7.7a

and BC'O are congruent, and triangles BA’O and CA'O are congruent. It
follows that 40 = BO = CO. Connect O with B’, the midpoint of AC.
Then triangles AB’O and CB’O are congruent, whence ¥ AB'O = xCB'O
= 90°, and B’'O is the perpendicular bisector of AC.

Case 2 (two of the perpendicular bisectors intersect in an ultra-ideal
point): Let the perpendiculars to AB and BC at the midpoints C’ and A’
be hyperparallel (see Figure 7.7b). They then have a common perpendicular

/1
A Y C
\\ H : \ /
Figure 7.7b N TN /
\\ / H \\ //
N / | \ /
\ / | 7
N / I \| -
/
h 2 A /& h h A b
H N L J M K

MN. Draw AH, BJ, CK perpendicular to MN. Draw AN, NB, BM, MC.
Then triangles AC’N and BC’N are congruent (by I 4), whence AN = BN
and XANH = < BNJ. It now follows that triangles AHN and BJN are
congruent (by I 26), whence AH = BJ. Similarly, CK = BJ. Therefore
AH = CK and HKCA is a Saccheri quadrilateral, and B’L, joining the mid-
point B’ of AC to the midpoint L of HK, is perpendicular to both AC and
MN. 1t follows that A°M, B’L, C'N intersect in an ultra-ideal point I'yy.

Case 3 (two of the perpendicular bisectors intersect in an ideal point):
Let the perpendicular bisectors A’M and C’N of BC and BA be parallel
(see Figure 7.7c). Then the perpendicular bisector B’L of AC cannot
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intersect either A’M or C’'N (for if it did, then, by Case 1, 4’M and C'N
would have to intersect). Also, B’L cannot be hyperparallel to either 4A’M
or C'N (for if it were, then, by Case 2, A’M and C’'N would have to be
hyperparallel). It follows that A’M, B'L, C'N all pass through a common
ideal point Q, or they form a triangle having three ideal vertices Q,, Q,,
Q;. We show that the second situation cannot occur.

Consider a triangle having three ideal vertices Q;, Q,, Qj; (see
Figure 7.7d). We shall prove that no straight line can cut all three sides of

Figure 7.7d

A 8

such a triangle. Let ST, for example, cut Q,Q, in S and Q,Q; in T.
Draw TQ, and produce it in the opposite sense to a point R. Then ST
lies within the vertical angles Q,7Q, and RTQ,, and consequently cannot
intersect Q;Q;.

We now show that there is always at least one line which intersects all
three of the perpendicular bisectors of the sides of an ordinary triangle.
Let X A (see Figure 7.7¢) be not less than any other angle of triangle ABC.
Mark off x BAK = ¥ B, XCAL = £ C. Then AK, AL cut side BC in points
K, L. But K lies on the perpendicular bisector of side 4B, and L lies on
the perpendicular bisector of side AC. Thus side BC cuts all three of the
perpendicular bisectors.

It now follows that the perpendicular bisectors of the sides of an ordinary
triangle cannot form a triangle having three ideal vertices, and Case 3 is
completed.
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Figure 7.7e

7.8 MAPPING THE PLANE ONTO THE INTERIOR
OF A CIRCLE

In this short section we consider an interesting mapping which, when carried
out in the Euclidean plane, maps the plane onto itself, but when carried out
in the Lobachevskian plane, maps the plane onto the interior of a circle.

We first establish an important theorem that has come to be called
Hjelmslev’s Theorem (see Problem 5, Section 3.5). This theorem has been
known for a long time, but it was J. T. Hjelmslev (1873-1950) who, in 1907,
made the remarkable discovery that it belongs to absolute geometry and
that it has numerous applications in Lobachevskian geometry. Following
is a proof, by absolute geometry, of Hjelmslev’s Theorem.

7.8.1 HIELMSLEV’S THEOREM. The midpoints of the segments joining pairs
of corresponding points of two congruent point rows of either a Euclidean
or a Lobachevskian plane are collinear or coincident.

Let ABC --- and A'B’C’ - - - (see Figure 7.8a) be two congruent point

Figure 7.8a

rows on lines m and m’ such that AB= A’'B’, BC = B'C’, etc., and let L,
M, N be the midpoints of 44’, BB’, CC’, respectively. It is easy to see that
if two of the midpoints coincide, then they all do. Consequently we assume
that the midpoints are distinct. Let m” be the image of m under the reflection
R(L), B” and C” being the images of B and C under the reflection. Let s be

7.8 Mapping the Plane onto the Interior of a Circle
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the bisector of < B’A’B”. Then the transformation R(s)R(L) is an isometry
which maps the point row on m onto the point row on m’'. Let ¢ be the line
through L perpendicular to s. Since both R(L) and R(s) map ¢ onto itself,
it follows that R(s)R(L) maps ¢ onto itself. Let K be the foot of the per-
pendicular from B on t. Then R(s)R(L) carries K into some point K’ on ¢.
Since BK is carried into B’K’ and ¥ BKK’ into ¥ B’K’K, it follows that K’
is the foot of the perpendicular from B’ on ¢, whence (since B and B’ lie on
opposite sides of ¢) the midpoint M of BB’ is on ¢. Similarly, the midpoint
of CC' is on t, etc., and the theorem is proved.

7.8.2 NotaTION. Let O be a fixed point of either a Euclidean or a
Lobachevskian plane, and let 6 be a fixed sensed acute angle. The trans-
formation which maps any point P of the plane (see Figure 7.8b) into the
point P’ such that ¥ POP’' =0 and xOP'P =90° will be denoted by S.
The transformation R(O, —6)S will be denoted by T.

Figure 7.8b

P’

7.8.3 THEOREM. Under transformation T: (1) point O is invariant, (2)
straight line segments map into straight line segments, (3) angles with vertex
at O map into equal angles with vertex at O, (4) right angles with one side
passing through O map into right angles with one side passing through O,
(5) circles with center O map into circles with center O.

If the five properties hold for transformation S, then they also hold for
transformation 7, since T = R(O,—6)S and R(O,—60) is an isometry.
Consider, then, the plane subjected to transformation S.

Property (1) is obvious. It is also clear that any straight line passing
through O maps into a straight line passing through O. Consider (see
Figure 7.8c) a straight line m not passing through O and let 4, B, C be
any three points on m. The rotation R(0,20) carries line m and its point
row A, B, C into a line m” and a congruent point row 4", B”, C”". By
Hjelmslev’s Theorem, the midpoints L, M, N of AA", BB", CC" are
collinear (and, in this case, noncoincident). But L, M, N are the images 4,
B’, C’' of A, B, C under the transformation S. It is now clear that trans-
formation S maps straight line segments into straight line segments, and
property (2) is established. We leave it to the reader to establish the easy
properties (3), (4), (5).
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Figure 7.8c

7.8.4 THEOREM. In the Euclidean plane, transformation T is the homothety
H(O, cos 0), which therefore maps the plane onto itself.

Because, under 7, points P, P’, O are collinear and, in the Euclidean
plane, OP’' = OP cos 0.
7.8.5 THEOREM. In the Lobachevskian plane, transformation T maps the
plane onto the interior of the circle of center O and radius h, where TI(h) = 6.

Let r be any ray from O (see Figure 7.8d). Then, under S, ray r maps

Figure 7.8d

into ray r’ making an angle 6 with ray r. On r’ mark off OH equal to A,
the distance corresponding to 6 as angle of parallelism. Then S maps ray
r onto the segment OH, point H excluded. It follows that S, and therefore
also T, maps the Lobachevskian plane onto the interior of the circle having
O as center and 4 as radius.

Many properties of the Lobachevskian plane can be easily obtained from
its map under transformation 7. The reader has undoubtedly observed that
the map is similar to the graphical model of the Lobachevskian plane des-
cribed at the end of Section 7.6. Space forbids us from developing this
connection further.

7.8 Mapping the Plane onto the Interior of a Circle
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PROBLEMS

1. Show that if two of the midpoints of the segments joining pairs of corresponding
points of two congruent point rows of either a Euclidean or a Lobachevskian
plane are coincident, then they are all coincident.

2. Show, in the proof of Theorem 7.8.3, that L, M, N cannot be coincident.

3. (a) Give a proof, by absolute geometry, of the theorem: If a quadrilateral 0ABC
has right angles at 4 and C, and if D is the foot of the perpendicular from O
on AC, then X A0OD = XBOC.

(b) Give a simple Euclidean proof of the theorem of part (a).

4. (a) Give a proof, by absolute geometry, of the theorem: Any two plane angles
of a dihedral angle are equal.

(b) Look up, in an elementary solid geometry text, the customary proof of the
theorem of part (a) and note that it utilizes the Euclidean parallel postulate.

5. With the aid of the mapping induced by transformation 7 in the Lobachevskian
plane, prove the following theorems of Lobachevskian geometry:

(a) If PX is parallel to AB and R is any point on PX such that P and R are on
the same side of X, then RX is parallel to AB.

(b) If CD is parallel to AB, then AB is parallel to CD.

(©) If AB and CD are parallel to EF, then AB is parallel to CD.

(d) As h increases, Il(h) decreases, passing through all values between 90°
and 0°.

(e) The theorem of Problem 3 (a) also holds if B is an ideal point.

7.9 GEOMETRY AND PHYSICAL SPACE

Euclidean geometry is based upon a set of postulates, one of which, the
parallel postulate, can be taken in the form: ““In the plane of a given non-
incident point and line, only one line can be drawn through the given point
and not intersecting the given line.”” Lobachevskian geometry is based upon
the same set of postulates, except the parallel postulate is rejected and
replaced by: “In the plane of a given nonincident point and line, more than
one line can be drawn through the given point and not intersecting the given
line.”* It can be shown (and we shall do so in the next chapter) that this
alternative postulate is entirely compatible with all the other Euclidean
postulates.

One might think that a third geometry can similarly be based upon the
Euclidean postulate set with the parallel postulate rejected and replaced by:
“In the plane of a given nonincident point and line, no /ine can be drawn
through the given point and not intersecting the given line.”” It can easily
be shown, however, that this replacement of the parallel postulate is not
compatible with the remaining Euclidean postulates,t and, to get a consistent
* In Section 7.2 we actually adopted a somewhat stronger postulate than this, but, as
was pointed out at the time, we did so merely for convenience. In fact, it can be shown
that a postulate even weaker than the one stated above will suffice.

1 At least as Euclid interpreted them; the replacement contradicts, for example, Proposition
127.
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postulate set for a third geometry based on this second alternative, some
of the other Euclidean postulates must also be altered. But these adjust-
ments of the other postulates can be made, and geometers have in this way
developed a second non-Euclidean geometry. This second non-Euclidean
geometry is the Riemannian non-Euclidean geometry mentioned toward the
end of Section 7.1. In some respects the Riemannian non-Euclidean geometry
is more complicated than is the Lobachevskian non-Euclidean geometry,
and accordingly we do not take the space to develop it here.

Since we have a number of geometries of space—the Euclidean and the
two classical non-Euclidean geometries— the question is often asked, ““ Which
is the true geometry?’’ By this question is meant, of course, “ Which ge-
ometry properly describes physical space?”” Now when it comes to the
application of several mathematical theories to a given physical situation,
we are interested in that mathematical theory which best explains, or more
closely agrees with, the observed facts of the physical situation, and which
will stand the kinds of tests customarily placed on hypotheses in any field
of scientific enquiry. In the present case, then, we are interested in which
of the Euclidean and two classical non-Euclidean systems of geometry most
closely agrees with the observed facts of physical space. Now it is not difficult
to show that all three geometries under consideration fit our very limited
portion of physical space equally well, and so it would seem we must be
content with an indeterminate answer until some crucial experimental test
on a great scale can be devised to settle the matter. Such a crucial test would
appear to be the measurement of the sum of the three angles of a large
physical triangle. To date no deviation, exceeding expected errors in measure-
ment, from 180° has been found in the sum of the angles of any physical
triangle. But, we recall, the discrepancy of the sum of the angles of a triangle
from 180° in the two non-Euclidean geometries is proportional to the area
of the triangle, and the area of any triangle so far measured may be so small
that any existing discrepancy is swallowed by the allowed errors in measure-
ment.

Because of the apparently inextricable entanglement of space and matter,
there are reasons for believing it may be impossible to determine by physical
experiments whether our space is Euclidean or non-Euclidean. Since all
measurements involve both physical and geometrical assumptions, an
observed result can be explained in many different ways by merely making
suitable compensatory changes in our assumed qualities of space and matter.
For example, it is quite possible that a discrepancy observed in the angle
sum of a triangle could be explained by preserving the assumptions of
Euclidean geometry but at the same time modifying some physical law,
such as some law of optics. And again, the absence of any such discrepancy
might be compatible with the assumptions of a non-Euclidean geometry,
together with some suitable adjustments in our assumptions about matter.
On these grounds Henri Poincaré (1854-1912) maintained the impropriety
of asking which geometry is the true one. To clarify this viewpoint, Poincaré

7.9 Geometry and Physical Space
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devised an imaginary universe X occupying the interior of a sphere of radius
R immersed in Euclidean space, and in which he assumed the following
physical laws to hold:

(1) At any point P of X the absolute temperature 7T is given by T =
k(R? — r?), where r is the distance of P from the center of £ and k is a
constant.

(2) The linear dimensions of a material body vary directly with the
absolute temperature of the body’s locality.

(3) All material bodies in ¥ immediately assume the temperatures of
their localities.

Now it is quite possible for the inhabitants of £ to be unaware of the
above three physical laws holding in their universe. For example, one way
to detect a change in temperature as we go from a warm room, say, into a
cool one, is that we feel the change by carrying our warmed bodies into the
cooler room and then awaiting our skins to adjust to the new temperature.
In ¥, Law 3 would neutralize this test. A thermometer would not serve
either; by Law 2 all material bodies thermally expand and contract in the
same way. Law 2 also prohibits an inhabitant of X from detecting his change
of size with a measuring stick that he carries about with him.

An inhabitant of £ would feel that his universe is infinite in extent on the
simple grounds that he never reaches a boundary after taking any finite
number N of steps, no matter how large N may be chosen. Of course he does
not know that this is because he himself, and the length of his steps along
with him, are becoming smaller and smaller as he advances from the center
of his universe.

It is easy to see that geodesics (paths of shortest length joining pairs of
points) in ¥, as measured by an inhabitant of X, are curves bending toward
the center of . As a matter of fact, it can be shown that the geodesic through
two points 4 and B of X is an arc of the circle through 4 and B which cuts
the bounding sphere of X orthogonally. Let us now impose one further
physical law on the universe X, by supposing:

(4) Light travels along the geodesics of X.

This condition might be physically realized by filling £ with a gas having
a proper index of refraction at each point of . Now, because of Law 4,
geodesics of T actually “look straight” to an inhabitant of X. But the
reader can easily show (see Figure 7.9a, where three ‘““lines” are drawn
through point P and not intersecting “line” /) that in the geometry of
geodesics in ¥ the Lobachevskian parallel postulate holds, so that an
inhabitant of ¥ would believe that he lives in a non-Euclidean world. Here
we have a piece of ordinary, and supposedly Euclidean, space, which,
because of different (and actually undetectable) physical laws, appears to
be non-Euclidean.

We would do better, then, to ask, not which is the true geometry, but
which is the most convenient geometry, and this convenience might depend
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Figure 7.9a

upon the application at hand. Certainly, for drafting, for terrestrial survey-
ing, and for the construction of ordinary buildings and bridges, the Euclidean
geometry is probably the most convenient simply because it is the easiest
with which to work.

There are physical studies where geometries other than the Euclidean
have been found to be more acceptable. For example, Einstein found in
his study of the general theory of relativity that none of the three geometries
that we have been considering is adequate, and he adopted another kind
of non-Euclidean geometry that had been first broached by Bernhard
Riemann in his probationary lecture of 1854—a non-Euclidean geometry
whose discrepancies from Euclidean geometry are not uniform, but vary
from place to place in space depending on the concentration of matter pre-
sent in space at the place. Again, a recent study* of visual space (the space
psychologically observed by persons of normal vision) came to the conclusion
that such space can most conveniently be described by the Lobachevskian
non-Euclidean geometry. Other examples can be given.

We here conclude the present chapter on non-Euclidean geometry. We
already see, in this last section, that non-Euclidean geometry has vitally
effected earlier concepts of geometry, and we are now naturally led to con-
sider the foundations of geometry. This we do in the next chapter, where,
among other things, we shall look into the matter of the consistency of
non-Euclidean geometry.
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The Foundations of
Geometry

8.1 Some Logical Shortcomings of Euclid’s

“Elements” - 8.2 Modern Postulational Foundations
for Euclidean Geometry - 8.3 Formal Axiomatics

8.4 Metamathematics - 8.5 The Poincaré Model and
the Consistency of Lobachevskian Plane Geometry

8.6 Deductions from the Poincaré Model - 8.7 A
Postulational Foundation for Plane Projective

Geometry - 8.8 Non-Desarguesian Geometry

8.9 Finite Geometries

The discovery of a non-Euclidean geometry had a marked effect on the
subsequent development of geometry, and, indeed, on the subsequent
development of much of mathematics in general. Prior to the discovery
it was believed that mathematics was concerned with finding unique and
necessary truths about the real world, and that the postulates and theorems
of mathematics were essentially observed and derived laws of nature. In
particular, the postulates and theorems of geometry were thought to consti-
tute an unequivocal description of physical space. The discovery of a non-
Euclidean geometry compelled mathematicians to adopt a new viewpoint
of their subject. Clearly, Euclidean and Lobachevskian geometry could not
each be such a description of physical space, for many theorems of these
two geometries contradict each other. If Lobachevskian geometry was to be
considered as a part of mathematics, then mathematics could not be con-
cerned only with apodictic truths about the physical world, and a whole
new viewpoint of the nature of mathematics needed to be developed. Not
only this, but the foundations of the subject had to be carefully reconstructed.
Many gifted individuals were attracted to this latter task, and an enormous
amount of foundational research was carried out. It has been reported that in
the thirty-year period from 1880 to 1910, some 1,385 articles appeared devoted
to the foundations of geometry alone, and activity in this field is still very great.
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The present chapter is devoted to the above matters. It will attempt to
describe a present-day view of the nature of mathematics; it will introduce
the reader to the important and highly interesting subject of the foundations
of geometry; and it will point up the purely hypothetico-deductive nature
of much of current geometrical study.

8.1 SOME LOGICAL SHORTCOMINGS OF EUCLID'S
ELEMENTS

It would be very surprising indeed if Euclid’s Elements, being such an early
and colossal attempt at the postulational method of presentation, should
be free of logical blemishes. It is therefore no great discredit to the work
that critical investigations have revealed a number of defects in its logical
structure. Probably the gravest of these defects are certain tacit assumptions
that are employed in the deductions but which are not granted by the
postulates and axioms of the work. This danger exists in any deductive
study when the subject matter is overly familiar to the author. Usually a
thorough grasp of the subject matter in a field of study is regarded as an
indispensable prerequisite to serious work, but in developing a deductive
system such knowledge can be a definite disadvantage unless proper pre-
cautions are taken.

A deductive system differs from a mere collection of statements in that
it is organized in a very special way. The key to the organization lies in the
fact that all statements of the system other than the original assumptions
must be deducible from these initial hypotheses, and that if any additional
assumption should creep into the work the desired organization is not
realized. Now anyone formulating a deductive system knows more about
his subject matter than just the initial assumptions he wishes to employ.
He has before him a set of statements belonging to his subject matter, some
of which he selects for postulates and the rest he presumably deduces from
his postulates as theorems. But, with a large body of information before
one, it is very easy to employ in the proofs some piece of this information
which is not embodied in the postulates. Any piece of information used in
this way may be so apparently obvious or so seemingly elementary that it
is assumed unconsciously. Such a tacit assumption, of course, spoils the
rigidity of the organization of the deductive system. Moreover, should that
piece of information involve some misconception, its introduction may lead
to results which not only do not strictly follow from the postulates but
which may actually contradict some previously established theorem. Herein,
then, lies the pitfall of too great a familiarity with the subject matter of the
discourse; at all times in building up a deductive system one must proceed
as if one were completely ignorant of the developing material.

The tacit assumption by Euclid of something that is not contained in his
basic assumptions is exemplified in the very first deduced proposition of
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Figure 8.1a

the Elements. In order to examine the difficulty we shall quote Proposition
I 1 verbatim from Heath’s translation.*

On a given finite straight line to construct an equilateral triangle.

Let AB [see Figure 8.1a] be the given finite straight line.

Thus it is required to construct an equilateral triangle on the straight line AB.

With center 4 and distance AB, let the circle BCD be described. [Postulate 3]

Again, with center B and distance BA, let the circle ACE be described.
[Postulate 3]

And from the point C, in which the circles cut one another, to the points A4, B,
let the straight lines CA, CB be joined. [Postulate 1]

Now, since the point A4 is the center of the circle CDB, AC is equal to AB.
[Definition 15]

Again, since the point B is the center of the circle CAE, BC is equal to BA.
[Definition 15]

But CA was also proved equal to 4B; therefore each of the straight lines CA,
CB is equal to 4B. And things which are equal to the same thing are also equal
to one another; therefore CA is also equal to CB. [Axiom 1]

Therefore the three straight lines CA, AB, BC are equal to one another.

Therefore the triangle ABC is equilateral; and it has been constructed on the
given finite straight line AB.

(Being) what it was required to do.

Now the construction of the two circles in this demonstration is certainly
justified by Postulate 3, but there is nothing in Euclid’s first principles which
explicitly guarantees that the two circles shall intersect in a point C, and
that they will not, somehow or other, slip through each other with no
common point. The existence of this point, then, must be either postulated
or proved, and it can be shown that Euclid’s postulates are insufficient to
permit the latter. Only by the introduction of some additional assumption
can the existence of the point C be established. Therefore the proposition
does not follow from Euclid’s first principles, and the proof of the proposition
is invalid.

The fallacy here lies, not in assuming something contrary to our concept
of circles, but in assuming something which is not implied by our accepted

*T. L. Heath, The Thirteen Books of Euclid’s Elements, 3 vols., 2nd ed. New York:
Dover Publications, Inc., 1956.
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basic assumptions. This is an example where the tacit assumption is so
evident and elementary that there does not appear to be any assumption.
The fallacy is a subtle one, but had Euclid known nothing more about
circles than what his first principles say of them he certainly could not have
fallen into this error.

What is needed here is some additional postulate which will guarantee
that the two circles concerned will intersect. Postulate 5 gives a condition
under which two straight lines will intersect. We need similar postulates
telling when two circles will intersect and when a circle and a straight line
will intersect. What is essentially involved here is the continuity of circles
and straight lines, and in modern treatments of geometry the existence of
the desired points of intersection is taken care of by some sort of continuity
postulate.

Another tacit assumption made by Euclid is that the straight line is of
infinite extent. Although Postulate 2 asserts that a straight line may be
produced indefinitely, it does not necessarily imply that a straight line is
infinite in extent, but merely that it is endless, or boundless. The arc of a
great circle joining two points on a sphere may be produced indefinitely
along the great circle, making the prolonged arc endless, but certainly it is
not infinite in extent. Now it is conceivable that a straight line may behave
similarly, and that after a finite prolongation it, too, may return on itself.
It was Bernhard Riemann who, in his famous lecture, Uber die Hypothesen
welche der Geometrie zu Grunde liegen, of 1854, distinguished between the
boundlessness and the infinitude of straight lines. There are numerous
occasions where Euclid unconsciously assumed the infinitude of a straight
line. Let us briefly consider, for example, Proposition I 16:

In any triangle, if one of the sides be produced, the exterior angle is greater
than either of the interior and opposite angles.

A précis of Euclid’s proof runs as follows. Let ABC (see Figure 8.1b) be
the given triangle, with BC produced to D. Let E be the midpoint of AC.
Draw BE and extend it its own length to F. Draw CF. Then triangles BEA
and FEC can easily be shown to be congruent, whence < FCE = ¥ BAC.

A F

Figure 8.1b
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But ¥xACD > X FCE, whence XxACD > < BAC. By producing AC to G
we may similarly show that ¥ BCG, which is equal to < ACD, is also greater
than < ABC.

Now if a straight line should return on itself, like the great circle arc
considered above, BF may be so long that F will coincide with B or lie on
the segment BE. Should this be the case the proof would certainly fail.
Euclid was misled by his visual reference to the figure rather than to the
principles that should be the basis of his argument. Clearly, then, to make
the proof universally valid we must either prove or postulate the infinitude
of straight lines.

One can point out other tacit assumptions which, like the above, were
unconsciously made by Euclid and which vitiate the true deductive character
of his work. For example, in the proof of Proposition I 21, Euclid uncon-
sciously assumed that if a straight line enters a triangle at a vertex it must,
if sufficiently produced, intersect the opposite side. It was Moritz Pasch
(1843-1930) who recognized the necessity of a postulate to take care of this
situation. Again, Euclid made no provision for linear order, and his concept
of “betweenness” is without any postulational foundation, with the result
that paradoxes are possible. Also, his Postulate 1, which guarantees the
existence of at least one straight line joining two points 4 and B, probably
was meant to imply uniqueness of this line, but the postulate fails to assert
so much. And the objections that can be raised against the principle of
superposition, still employed in some textbooks, are only partially met by
Euclid’s Axiom 4.

In short, the truth of the matter is that Euclid’s initial assumptions are
simply not sufficient for the derivation of all of the 465 propositions of the
Elements; his set of postulates and axioms needs to be considerably amplified.
The work of perfecting Euclid’s initial assumptions, so that all of his geom-
etry can rigorously follow, occupied mathematicians off and on for more
than two thousand years. Not until the end of the nineteenth century and
the early part of the twentieth century, after the foundations of geometry
had been subjected to an intensive study, were satisfactory sets of postulates
supplied for Euclidean plane and solid geometry.

Not only is Euclid’s work marred by numerous tacit assumptions, but
some of the preliminary definitions also are open to criticism. Euclid made
some sort of attempt to give an explicit definition, or at least an explanation,
of all the terms of his discourse. Now some terms of a logical discourse
must deliberately be chosen as primitive or undefined terms, for it is as
impossible to define all the terms of the discourse explicitly as it is to prove
all of the statements of the discourse. The postulates of the discourse are,
in final analysis, assumed statements about the primitive terms. From this
point of view, the primitive terms may be regarded as being defined implicitly,
in the sense that they are any things which satisfy the postulates.

In Euclid’s development of geometry the terms point and straight line, for
example, could well have been included in a set of primitive terms for the
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discourse. At any rate, Euclid’s definition of a point as *that which has no
part” and a straight line as ““a line which lies evenly with the points on
itself” are, from a logical viewpoint, woefully inadequate. One distinction,
as we shall see, between the Greek and the modern conception of the postu-
lational method lies in this matter of primitive terms; in the Greek conception
there is no simple listing of the primitive terms. Other differences between
the Greek and the modern conception of the postulational method will
become apparent when the modern revisions of Euclid’s work are discussed.

PROBLEMS

1. If an assumption tacitly made in a deductive development should involve a
misconception, its introduction may lead not only to a result which does not
follow from the postulates of the deductive system, but to one which may actually
contradict some previously established theorem of the system. From this
point of view, criticize the following three geometrical paradoxes:

(a) To prove that any triangle is isosceles.
Let ABC be any triangle (see Figure 8.1c). Draw the bisector of ¥ C and the

C

Figure 8.1c G

A o B

perpendicular bisector of side 4B. From their point of intersection E, drop
perpendiculars EF and EG on AC and BC, respectively, and draw EA and EB.
Now right triangles CFE and CGE are congruent, since each has CE as hypot-
enuse and since ¥ FCE = ¥ GCE. Therefore CF = CG. Again, right triangles
EFA and EGB are congruent, since leg EF of one equals leg EG of the other
(any point E on the bisector of an angle C is equidistant from the sides of the
angle) and since hypotenuse EA of one equals hypotenuse EB of the other
(any point E on the perpendicular bisector of a line segment AB is equidistant
from the extremities of that line segment). Therefore F4 = GB. It now follows
that CF + FA = CG + GB, or CA = CB, and the triangle is isosceles.

(b) To prove that a right angle is equal to an obtuse angle.

Let ABCD be any rectangle (see Figure 8.1d). Draw BE outside the rectangle
and equal in length to BC, and hence to AD. Draw the perpendicular bisectors
of DE and AB; since they are perpendicular to nonparallel lines, they must
intersect in a point P. Draw AP, BP, DP, EP. Then PA = PB and PD = PE
(any point on the perpendicular bisector of a line segment is equidistant from
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Figure 8.1d

P

the extremities of the line segment). Also, by construction, AD = BE. Therefore
triangles APD and BPE are congruent, since the three sides of one are equal
to the three sides of the other. Hence & DAP = <« EBP. But XBAP =
<« ABP, since these angles are base angles of the isosceles triangle APB. By
subtraction it now follows that right angle DAB = obtuse angle EBA.
(c) To prove that there are two perpendiculars from a point to a line.

Let any two circles intersect in A and B (see Figure 8.1¢). Draw the diameters

Figure 8.1e

AC and AD, and let the join of C and D cut the respective circles in M and N.
Then angles AMC and AND are right angles, since each is inscribed in a semi-
circle. Hence AM and AN are two perpendiculars to CD.

. To guarantee the existence of certain points of intersection (of line with circle
and circle with circle) Richard Dedekind (1831-1916) introduced into geometry
the following continuity postulate: If all the points of a straight line fall into two
classes, such that every point of the first class lies to the left of every point of the
second class, then there exists one and only one point of the line which produces
this division of all points into two classes, that is, this severing of the straight line
into two portions.

(a) Complete the details of the following indicated proof of the theorem:
The straight line segment joining a point A inside a circle to a point B outside the
circle has a point in common with the circle.

Let O be the center and r the radius of the given circle (see Figure 8.1f), and
let C be the foot of the perpendicular from O on the line determined by 4 and B.
The points of the segment 4B can be divided into two classes: those points P
for which OP < r and those points Q for which OQ = r. It can be shown that,

o 47,
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Figure 8.1f

in every case, CP < CQ. Hence, by Dedekind’s Postulate, there exists a point
R of AB such that all points which precede it belong to one class and all which
follow it belong to the other class. Now OR < r, for otherwise we could choose
S on AB, between R and B, such that RS < r — OR. But, since OS < OR
+ RS, this would imply the absurdity that OS < r. Similarly, it can be shown
that OR ¥ r. Hence we must have OR = r, and the theorem is established.

(b) How might Dedekind’s Postulate be extended to cover angles?

(c) How might Dedekind’s Postulate be extended to cover circular arcs?

. Let us, for convenience, restate Euclid’s first three postulates in the following

equivalent forms:

(1) Any two distinct points determine a straight line.

(2) A straight line is boundless.

(3) There exists a circle having any given point as center and passing through
any second given point.

Show that Euclid’s postulates, partially restated above, hold if the points of
the plane are restricted to those whose rectangular Cartesian coordinates for
some fixed frame of reference are rational numbers. Show, however, that under
this restriction a circle and a line through its center need not intersect each
other.

. Show that Euclid’s postulates (as partially restated in Problem 3 above) hold if we

interpret the plane as the surface of a sphere, straight lines as great circles on
the sphere, and points as points on the sphere. Show, however, that in this
interpretation the following are true:

(a) Parallel lines do not exist.

(b) All perpendiculars to a given line erected on one side of the line intersect
in a point.

(c) It is possible to have two distinct lines joining the same two points.

(d) The sum of the angles of a triangle exceeds two right angles.

(e) There exist triangles having all three angles right angles.

(f) An exterior angle of a triangle is not always greater than each of the two
remote interior angles.

(g) The sum of two sides of a triangle can be less than the third side.

(h) A triangle with a pair of equal angles may have the sides opposite them
unequal.

(i) The greatest side of a triangle does not necessarily lie opposite the greatest
angle of the triangle.

. In 1882 Moritz Pasch formulated the following postulate: Let A, B, C be three

points not lying in the same straight line, and let m be a straight line lying in the
plane of ABC and not passing through any of the points A, B, C. Then, if the line
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m passes through a point of the segment AB, it will also either pass through a point
of the segment BC or a point of the segment AC. This postulate is one of those
assumptions classified by modern geometers as a postulate of order, and it assists
in bringing out the idea of ‘ betweenness.”

(a) Prove, as a consequence of Pasch’s Postulate, that if a line enters a triangle
at a vertex, it must cut the opposite side.

(b) Show that Pasch’s Postulate does not hold for an arbitrary spherical triangle
cut by a great circle.

8.2 MODERN POSTULATIONAL FOUNDATIONS FOR
EUCLIDEAN GEOMETRY

After the discovery of non-Euclidean geometry, a need was felt for a truly
satisfactory postulational treatment of Euclidean geometry. All hidden, or
tacit, assumptions had to be ferreted out, and a logically acceptable set of
underlying postulates for the subject had to be clearly and unequivocally
put forth. Such an organization of Euclidean geometry was first accom-
plished in 1882 by the German mathematician Moritz Pasch.

In his treatment of Euclidean geometry, Pasch recognized the important
distinction between explicit and implicit definition. Most people are familiar
with the concept of explicit definition, inasmuch as this is the type of defini-
tion most frequently employed. In an explicit definition a new term is
expressed by means of terms which are already accepted in the vocabulary.
In a technical sense, then, a new term introduced in such a manner serves
merely as an abbreviation for a complex combination of terms already
present. Thus a new term introduced by explicit definition is really arbitrary,
though convenient, and may be entirely dispensed with, though then the
discourse in which the vocabulary is to be employed would immediately
increase in complexity.

Implicit definition, on the other hand, is relatively unfamiliar to most
people, though such a notion is indispensable in logical theory. The necessity
for implicit definition is due to the fact that it is impossible to define all
terms explicitly if we wish to avoid circularity. It is impossible, for example,
to define word A in terms of word B, then word B in terms of word C, and
so on indefinitely, for such a procedure would imply an infinite number of
words in the vocabulary. Of course the dictionary makes an attempt to
define all words explicitly through the admitted use of circularity, but it is
hoped that the person using the dictionary has developed an adequate
vocabulary so that the words in terms of which some unknown word is
defined are already familiar to him.

Every person is aware of his own attempt to introduce new words into
his vocabulary by observing how these words are used by others. This idea
of defining a word through the medium of the context in which it occurs
is the basic idea of implicit definition. In a logical discourse, since not all
technical terms can be explicitly defined, there must be some whose meanings
can be realized only by observing the context in which they are employed.
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A logical discourse, in other words, must accept a relatively small number
of primitive technical terms which can be used for explicitly defining all the
other technical terms which occur in the discourse, these primitive terms of
the discourse receiving no definitions except those given to them implicitly
by their presence in the adopted postulates of the discourse.

Whereas Euclid attempted a kind of explicit definition of the terms point,
line, and plane, for example, Pasch accepted these as primitive, or irreducible,
terms in his development of Euclidean geometry; he considered them only
implicitly defined by the basic propositions that he assumed as postulates
in his treatment. These assumed basic propositions were described by Pasch
as nuclear. Although the origin of the nuclear propositions might be found
in empirical considerations, Pasch emphasized that they are to be enunciated
without regard to any empirical significance. He declared that the creation
of a truly deductive science demands that all logical deductions must be
independent of any meanings which might be attached to the various con-
cepts. In fact, if it becomes necessary at any point in the construction of a
proof to refer to certain interpretations of the basic terms, then that is
sufficient evidence that the proof is logically inadequate. On the other hand,
by keeping all of the work purely formal, various applications of the dis-
course may be obtained by assigning different suitable meanings to the
primitive terms employed. From this point of view, Euclidean geometry is
essentially a symbolic system whose validity and possibility for further
development do not depend upon any specific meanings given to the basic
terms employed in the postulates of the geometry; Euclidean geometry is
reduced to a pure exercise in logical syntax. Where Euclid appears to have
been guided by visual imagery, and thus subjected to the making of tacit
assumptions, Pasch attempted to avoid this pitfall by deliberately considering
geometry as a purely hypothetico-deductive system. Pasch profoundly in-
fluenced postulational thinking in geometry, and later workers in the field
attempted to maintain the standards of rigor which he had introduced.

Following Pasch, the Italian mathematician Giuseppi Peano (1858-1932)
gave, in 1889, a new postulational development of Euclidean geometry.
Like Pasch, Peano based his treatment upon certain primitive terms, among
which are an entity called a “ point”” and a relation among points designated
by “betweenness.” From many points of view Peano’s work is largely a
translation of Pasch’s treatise into the notation of a symbolic logic which
Peano introduced to the mathematical world. In Peano’s version no empiri-
cism is found; his geometry is purely formalistic by virtue of the fact that it
is constructed as a calculus of relations between variables. Here we have
the mathematician’s ultimate cloak of protection from the pitfall of over-
familiarity with his subject matter. We have seen that Euclid, working with
visual diagrams in a field of study with which he was very familiar, uncon-
sciously made numerous hidden assumptions which were not guaranteed to
him by his axioms and postulates. To protect himself from similar prejudice,
Peano conceived the idea of symbolizing his primitive terms and his logical
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processes of thought. Clearly, if one is to say, “Two x’s determine a y,”
instead of, “ Two points determine a straight line,” one is not so likely to
be biased by preconceived notions about “points” and ‘straight lines,”
and if a symbolic logic is employed in the reasoning, one is not so likely
to fall into fallacies stemming from slippery intuition and other modes of
loose reasoning. The derivation of theorems becomes an algebraic process
in which only symbols and formulas are employed, and geometry is reduced
to a strictly formal process which is entirely independent of any interpreta-
tions of the symbols involved.

Another Italian mathematician, Mario Pieri (1860-1904), employed, in
1899, in a study of Euclidean geometry, a quite different approach from
that of his predecessors. He considered the subject of his study to be an
aggregate of undefined elements called “ points” and an undefined concept
of “motion.” Pieri’s first five postulates will indicate the important role
assigned to the concept of motion. They are:

1. There is given an aggregate S of points containing at least two distinct
members.

2. A motion establishes a pairing of the points of S such that to each point
P of S there corresponds some point P’ of S. For any motion which
establishes a correspondence between the points P of S and the points
P’ of S, there is an inverse motion which establishes a correspondence
between the points P’ of S and the points P of S.

3. The resultant of two motions performed successively is equivalent to a
single motion.

As a consequence of Postulates 2 and 3, the motion equivalent to some
motion followed by its inverse is a motion which makes each point of
S correspond to itself, or, in other words, leaves each point of S fixed.
This motion is called the identical motion. A motion which is not the
identical motion is called an effective motion.

4. For any two distinct points A and B, there exists an effective motion
which leaves A and B fixed. Such a motion may be referred to as a
rotation motion about the two points A and B.

5. If there is an effective motion which leaves three points A, B, C fixed,
then every motion which leaves A and B fixed also leaves C fixed.

As a result of Postulate 5, it is now possible to define the straight line
determined by two points A and B: ‘ The straight line AB is the aggregate
of points which remain fixed under any effective motion which leaves A
and B fixed.”

Although Pieri’s treatment of Euclidean geometry received no wide
acceptance, the development of certain modern notions is apparent in his
work. We have, for instance, the idea of transformation, or mapping. Pieri’s
motions are the direct isometries, or rigid displacements, which map the set
S of all points of space onto itself, and Pieri was considering Euclidean
geometry as the study of the properties and relations of configurations of
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points which remain invariant under the group of direct isometries. This
idea had earlier been generalized, in the famed Erlanger Programm, to form
the basis of Felix Klein’s remarkable codification of geometries. It should
incidentally be noted that Pieri’s idea of motion can be nicely adapted to
the Euclidean superposition proofs.

The modern postulational treatment of Euclidean geometry that has
received the widest acceptance is that due to the eminent German mathe-
matician David Hilbert (1862-1943). Professor Hilbert gave a course of
lectures on the foundations of Euclidean geometry at the University of
Gottingen during the 1898-1899 winter term. These lectures were rearranged
and published in a slender volume in June, 1899, under the title Grundlagen
der Geometrie (Foundations of Geometry). This work, in its various improved
revisions, is today a classic in its field; it has done far more than any other
single work since the discovery of non-Euclidean geometry to promote the
modern postulational method and to shape the character of a good deal
of present-day mathematics. The influence of the book was immediate.
A French edition appeared soon after the German publication, and an
English version, translated by E. J. Townsend, appeared in 1902. The work
went through seven German editions during the author’s lifetime, the
seventh edition appearing in 1930.* By developing a postulate set for Euclid-
ean geometry that does not depart too greatly in spirit from Euclid’s own,
and by employing a minimum of symbolism, Hilbert succeeded in convincing
mathematicians to a far greater extent than had Pasch and Peano, of the
purely hypothetico-deductive nature of geometry. But the influence of
Hilbert’s work went far beyond this, for, backed by the author’s great
mathematical authority, it firmly implanted the postulational method, not
only in the field of geometry, but also in essentially every other branch of
mathematics. The stimulus to the development of the foundations of mathe-
matics provided by Hilbert’s little book is difficult to overestimate. Lacking
the strange symbolism of the works of Pasch and Peano, Hilbert’s work
can be read, in great part, by any intelligent student of high school geo-
metry.

Whereas Euclid made a distinction between ‘“ axioms” and “‘ postulates,”
modern mathematicians consider these two terms as synonymous, and
designate all the assumed propositions of a logical discourse by either term.
From this point of view, Hilbert’s treatment of plane and solid Euclidean
geometry rests on 21 axioms or postulates, and these involve six primitive,
or undefined, terms. For simplicity we shall consider only those postulates
of Hilbert’s set which apply to plane geometry. Under this limitation there
are 15 postulates and five primitive terms.

The primitive terms in Hilbert’s treatment of plane Euclidean geometry
are point, line (meaning straight line), on (a relation between a point and a

* An eighth German edition, a revision and enlargement by Paul Bernays, appeared in
1956, a ninth German edition, by Bernays in 1962, and a tenth German edition by Bernays
in 1968. The last has been translated into English by Leo Unger (La Salle, Illinois: Open
Court Publishing Company, 1971).
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line), between (a relation between a point and a pair of points), and congruent
(a relation between pairs of points and between configurations called angles,
which are explicitly defined in the treatment). For convenience of language,
the phrase “point A4 is on line m” is frequently stated alternatively by the
equivalent phrases, ‘“‘line m passes through point 4 or “line m contains
point 4.”’

In Appendix 2 are listed, for purposes of discussion and for future refer-
ence, Hilbert’s 15 postulates for plane geometry. The reader will note that
the postulates are interspersed with occasional definitions when needed.
The statements of the postulates are taken, with some slight modifications
for the sake of clarity, from the seventh (1930) edition of Hilbert’s Grund-
lagen der Geometrie. Following Hilbert, the postulates are presented in
certain related groups.

Upon these fifteen postulates rests the extensive subject of plane Euclidean
geometry! To develop the geometry appreciably from these postulates is
too long a task for us to undertake here, but we shall add a few words
concerning the significance of some of the postulates.

The postulates of the first group define implicitly the idea expressed by
the primitive term “on,” and they establish a connection between the two
primitive entities, “ points”’ and “lines.”

The postulates of the second group were first studied by Pasch, and they
define implicitly the idea expressed by the primitive term ‘between.” In
particular, they assure us of the existence of an infinite number of points
on a line and that a line is not terminated at any point, and they guarantee
that the order of points on a line is serial rather than cyclical. Postulate II-4
(Pasch’s Postulate) differs from the other postulates of the group, for, since
it involves points not all on the same line, it gives information about the
plane as a whole. The postulates of order are of historical interest inasmuch
as Euclid completely failed to recognize any of them. It is this serious
omission on Euclid’s part that permits one, using only Euclid’s list of
assumptions, to derive paradoxes that arise from applying sound reasoning
to misconceived figures.

The postulates of the third group define implicitly the idea expressed by
the primitive term “ congruent” as applied to pairs of points and to angles.
These postulates are included in order to circumvent the necessity of dealing
with the concept of motion. For example, it is interesting to note how, in
Postulate III-6, Hilbert introduces the congruency of triangles without
employing Euclid’s method of superposition, still found in some high school
textbooks.

The Playfair parallel postulate appears as the only postulate of Group IV,
it is, of course, equivalent to Euclid’s parallel postulate. Using the postulates
of the first three groups one can prove that there is at least one line
through the given point 4 and not intersecting the given line m.

The first postulate of the last group (the Postulates of Archimedes) corre-
sponds to the familiar process of estimating the distance from one point of
a line to another by the use of a measuring stick; it guarantees that if we
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start at the one point and lay off toward the second point a succession of
equal distances (equal to the length of the measuring stick) we will ultimately
pass the second point. Upon this postulate can be made to depend the entire
theory of measurement and, in particular, Euclid’s theory of proportion.
The final postulate (the Postulate of Completeness) is not required for the
derivation of the theorems of Euclidean geometry, but it makes possible
the establishment of a one-to-one correspondence between the points of
any line and the set of all real numbers, and is necessary for the free use of
the real number system in analytic, or coordinate, geometry. It can be shown
that, in the presence of the other thirteen postulates, these last two postulates
are equivalent to the Postulate of Dedekind (see Problem 2, Section 8.1),
and therefore, if we should wish, they can be replaced by this postulate.

Considerably more was accomplished by Hilbert in his Grundlagen der
Geometrie than just the establishment of a satisfactory set of postulates for
Euclidean geometry. In showing the logical consistency and partial inde-
pendence of his postulates, Hilbert had to devise many interesting models,
or interpretations, for various subsets of the postulates. This amounted to
introducing various new systems of geometry and to creating a number of
unusual algebras of segments. The significance of several important postu-
lates and theorems in the development of Euclidean geometry is clearly
shown in the work, and examples of various kinds of nontraditional ge-
ometries are illustrated. For example, to show the independence of the
Postulate of Archimedes from the other postulates of the treatment, an
example of a non-Archimedean system is offered in which all the postulates
except the Postulate of Archimedes are shown to hold. There is also developed
in this work a theory of proportion and a theory of areas which are inde-
pendent of the postulate of Archimedes. These accompanying investigations
by Hilbert virtually inaugurated the twentieth-century study of abstract
geometry and successfully convinced many mathematicians of the hypo-
thetico-deductive nature of mathematics. By implanting the postulational
method in nearly all of mathematics since 1900, Hilbert’s Grundlagen der
Geometrie represents a definite landmark in the history of mathematical
thought.

Other postulational treatments of Euclidean geometry followed Hilbert’s
effort. In 1904, the American mathematician Oswald Veblen (1880-1960)
furnished a new postulate set in which he replaced the primitive notion of
“ betweenness,” as used by Peano and Hilbert, by a more pervasive primitive
relation of “order.”* With this new primitive relation, the terms “line,”
“plane,” “on,” and ‘‘congruent,” can receive explicit definition, and thus
the list of primitive terms be reduced to just two, namely, “ point” and
“order.” There is a feeling among mathematicians that the smaller one
can make the number of primitive terms in a postulational development,

* Oswald Veblen, “A system of axioms for geometry,” Transactions of the American
Mathematical Society, 5 (1904), 343-384.
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the more aesthetically pleasing is that postulational development—a prin-
ciple that was emphasized by Peano. A second study of the foundations of
Euclidean geometry was made by Veblen in 1911, in which his original
treatment was slightly revised to accord with some ideas put forth by
R. L. Moore.*

A very satisfying combination of the postulates of Hilbert and Veblen
has been employed by Gilbert de B. Robinson.t Robinson’s postulates are
essentially Veblen’s postulates of order combined with Hilbert’s postulates
of congruence and continuity. In 1913, E. V. Huntington (1874-1952)
offered a treatment of three-dimensional Euclidean geometry based upon
“sphere” and ‘“inclusion” (one sphere lying within another) as primitive
terms.f This unusual approach exemplifies the fact that it is possible to
characterize Euclidean geometry by systems of postulates which are super-
ficially very different from one another.

An excellent and detailed abstract postulational examination of Euclidean
geometry appeared in 1927 in a work of Henry George Forder.§ Here we
find many alternative postulate sets compared with one another. For example,
Forder considers nine different parallel postulates, which vary in the strengths
of their assumptions. By adopting a strong parallel postulate and by using
Dedekind’s Postulate as a postulate of continuity, Forder gives a postulate
set for Euclidean geometry based on only the two primitive terms “ point”
and “order.” He also gives an abstract treatment of a 1909 postulate
set of Pieri’s and based on the two primitive terms ‘“point” and *“con-
gruence.”

Whether or not it is wise to attempt a rigorous postulational treatment
of Euclidean geometry at the high school level is a matter of pedagogical
opinion. George Bruce Halsted made an unsuccessful effort in 1904, when
he published an elementary geometry textbook based upon Hilbert’s postu-
late set.]| More successful, and certainly worthy of examination, is an
attempt made in 1940 by Professors George David Birkhoff and
Ralph Beatley of Harvard University.§ Here a teachable high school course

* Oswald Veblen, “The foundations of geometry,” in Monographs on Topics of Modern
Mathematics Relevant to the Elementary Field, edited by J. W. A. Young. New York:
Dover Publications, Inc., 1955.

1 G. de B. Robinson, The Foundations of Geometry, 2nd ed. Mathematical Expositions
No. 1. Toronto: University of Toronto Press, 1946.

1 E. V. Huntington, “A set of postulates for abstract geometry, expressed in terms of the
simple relation of inclusion,” Mathematische Annalen, 73 (1913), 522-559. Also see
G. de B. Robinson, loc. cit., Appendix, pp. 157-160.

§ H. G. Forder, The Foundations of Euclidean Geometry. New York: Cambridge University
Press, 1927. Reprinted by Dover Publications, Inc.

|| G. B. Halsted, Rational Geometry. New York: John Wiley and Sons, Inc., 1904. Certain
logical criticisms of the text were met by Halsted in 1907 in a thoroughly revised second
edition; this edition has been translated into French.

€ G. D. Birkhoff and R. Beatley, Basic Geometry. Chicago: Scott, Foresman and Company,
1940. Reprinted by Chelsea Publishing Company Inc., 1959.
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in plane Euclidean geometry is evolved from five postulates based upon
an ability to measure line segments and angles. Although for pedagogical
reasons certain subtler mathematical and logical details are either ignored
or slurred over, the work does stem from a rigorous mathematical presenta-
tion that had been made earlier by Birkhoff.*

Since about 1960 a number of authors and writing groups have engaged
in the task of attempting to produce textual materials for the high school
geometry class wherein geometry is developed rigorously from a postulational
basis. In these attempts, usually either the Hilbert postulate set or the
Birkhoff postulate set (sometimes slightly altered or augmented) is adopted.

PROBLEMS

1. (@) Consider the following definitions taken from an elementary geometry

text:

(1) The diagonals of a quadrilateral are the two straight line segments
joining the two pairs of opposite vertices of the quadrilateral.

(2) Parallel lines are straight lines that lie in the same plane and that never
meet, however far they are extended in either direction.

(3) A parallelogram is a quadrilateral having its opposite sides parallel.

Now, without using any of the italicized words above, restate the proposition,
“The diagonals of a parallelogram bisect each other.”
(b) By means of appropriate explicit definitions reduce the following sentence
to one containing only five words: ‘“ The movable seats with four legs and a
back were restored to a sound state by the person who takes care of the building.”

These exercises illustrate the convenience of explicit definitions.

2. Trace the following words through a standard dictionary until a circular chain
has been established: (a) dead, (b) noisy, (c) line (in the mathematical sense).

3. In each of the following, is the given conclusion a valid deduction from the
given pair of premises?
(a) If today is Saturday, then tomorrow will be Sunday.
But tomorrow will be Sunday.
Therefore, today is Saturday.
(b) Germans are heavy drinkers.
Germans are Europeans.
Therefore, Europeans are heavy drinkers.
(c) If ais b, then cis d.
But c is d.
Therefore, a is b.
(d) All a’s are b’s.
All g’s are ¢’s.
Therefore, all ¢’s are b’s.

These exercises illustrate how a person may allow the meanings which he
associates with words or expressions to dominate his logical analysis. There
is a greater tendency to go wrong in (a) and (b) than in (c) and (d), which are
symbolic counterparts of (a) and (b).

* G. D. Birkhoff, “A set of postulates for plane geometry, based on scale and protractor,”
Annals of Mathematics, 33 (1932), 329-345.
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4. Consider the following set of postulates about certain objects called ¢ dabbas”

and certain collections of dabbas called “abbas”:

P1: Every abba is a collection of dabbas.

P2: There exist at least two dabbas.

P3: If p and g are two dabbas, then there exists one and only one abba
containing both p and gq.

P4: If L is an abba, then there exists a dabba not in L.

P5: If L is an abba, and p is a dabba not in L, then there exists one and only
one abba containing p and not containing any dabba that is in L.
(a) What are the primitive terms of this postulate set?
(b) Deduce the following theorems from the postulate set:

(1) Every dabba is contained in at least two abbas.

(2) Every abba contains at least two dabbas.

(3) There exist at least four distinct dabbas.

(4) There exist at least six distinct abbas.
(c) Restate the postulates by interpreting ‘““abba” as straight line”” and
“dabba” as “point.” Note that P5 is now Playfair’s Postulate.
(d) Define a kurple as any three dabbas not contained in the same abba. What
is a kurple in the interpretation of part (c)?

5. (a) Establish the following consequences of the first five postulates of Pieri’s

postulate set for Euclidean geometry (as given in Section 8.2).

(1) If C and D are two distinct points of the straight line AB, then 4 and B
are points of the straight line CD.

(2) If three points are on a straight line, then the three points corresponding
to them in any motion are also on a straight line.
(b) Pieri defines a sphere as follows: “If 4 and B are two distinct points, then
the aggregate of all points P such that for each P there exists a motion which
leaves A4 fixed but makes P correspond to B is called the sphere of center A
passing through B.”” Establish the following consequences of this definition and
Pieri’s first five postulates:

(1) A sphere transforms into a sphere in every motion.

(2) A motion which leaves the center of a sphere fixed transforms the sphere
into itself.

(3) If two spheres with centers 4 and B have only one point C in common,
then the three points A, B, C lie on a line.
(c) Trytoformulate, in terms of motion, a suitable definition of perpendicularity.

6. Prove the theorem that follows Postulate III-3 in Hilbert’s postulate set for
plane Euclidean geometry.

7. Assuming that if point B is between points 4 and D, and point C is between
B and D, then C is between 4 and D, deduce the following theorems from
Hilbert’s postulate set for plane Euclidean geometry:

(a) There is no limit to the number of distinct points between two given
distinct points.

(b) If neither of two distinct lines, @ and b, intersects a third line ¢, then a and b
do not intersect.

(¢) If two sides and the included angle of one triangle are congruent, re-
spectively, to two sides and the included angle of another triangle, then the third
side of the first triangle is congruent to the third side of the second triangle.
(d) If two angles and the included side of one triangle are congruent,
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respectively, to two angles and the included side of another triangle, then all the
parts (angles and sides) of the first triangle are congruent to the corresponding
parts of the second triangle.

8. Try to deduce the following proposition from Hilbert’s postulate set for plane
Euclidean geometry: Given any four points on a line, it is always possible to
denote them by letters 4, B, C, D in such a way that B is between 4 and C
and also between A4 and D, and that C is between 4 and D and alse between
B and D.

This proposition was included as a postulate in the first edition of Hilbert’s
work, but was later proved by E. H. Moore to be a consequence of Hilbert’s
other postulates.*

9. (a) Consider the configuration formed by the positive x axis and a directed
circular arc C of radius r radiating from the origin O and such that the arc C
is convex when viewed from its right-hand side. We shall call such a configura-
tion a (special kind of) horn angle, and denote it by h. Let T be the directed
tangent to C at O, and designate the positive (counterclockwise) angle from
the positive x axis around to 7T by 6. We shall compare two such horn angles
h and k' in the following way. If @ = @ and r = r’, thenwe sayh = h’;if 6 > ¢,
wesay h > h';if 6 = 6 but r < r’, then again we say h > h’. We further say
k' = nh, where n is a positive integer, if and only if ' = nf and r’ = r/n.
Show that our horn angles now form a non-Archimedean system of entities;
that is, show that there exist horn angles 4 and A’ such that nh < h’ for every
positive integer n.

(b) Show that a horn angle for which 8 =0 can be trisected with Euclidean

tools.
(¢) Consider pairs of power series of the form y = a;x + ax* + azx3 + - -
and y’ = a;x + ayx* + a; x> + - - -, where the coefficients are real numbers.

We shall compare two such power series as follows. We say y = y” if and only
if a, = a; for all i; we say y > y’ if and only if there exists some positive
integer k such that @, =a;,a, =a,, ..., G = @, G+1 > Go41. We
further say that y* = ny, where n is a positive integer, if and only if a;, = na,
for all i. Show that the set of all such power series form, under the above
definitions, a non-Archimedean system of entities. [This can be interpreted as
a generalization of part (a), where the circular arcs C have been replaced by
analytic curves passing through 0.]

(d) Consider a set of entities of which a typical member M is composed of the
segment —a = x = 0 (a > 0), and the isolated points x = 1, 2, . . ., k. Devise
a method of comparing such entities, and define nM, where n is a positive
integer, such that the entities form a non-Archimedean system.

() Let z=a + iband z- =a" + i’ (a, b, a’, b’ real and i = +/ —1) be two
complex numbers. Set z = z’, if and only if a =a" and b =b". If a > @/,
set z > z’; if a=a’, but b > b’, again set z > z’. Define nz = na + i(nb).
Show that the complex numbers, under the above definitions, form a non-
Archimedean system of entities.

(f) Show that the set of all coplanar vectors radiating from a point O can be
formed into a non-Archimedean system.

* E. H. Moore, “On the projective axioms of geometry,” Transactions of the American
Mathematical Society, 3 (1902), 142-158.
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10. It is pointed out in Section 8.2 that Huntington has given a postulate set for
Euclidean geometry of space in which sphere is taken as a primitive element and
inclusion as a primitive relation. Try to formulate, in terms of these primitive
terms, suitable definitions for point, segment, ray, and line.

8.3 FORMAL AXIOMATICS

The discovery of a non-Euclidean geometry (and not long after, of a non-
commutative algebra) led to a deeper study and refinement of axiomatic
procedure, and from the material axiomatics of the ancient Greeks there
evolved the formal axiomatics of the twentieth century. To help clarify the
difference between the two forms of axiomatics we first introduce the modern
concept of propositional function, the fundamental importance of which was
first brought to notice by the English mathematician and philosopher
Bertrand Russell (1872-1970).

Consider the three statements:

(1) Spring is a season.

(2) 8 is a prime number.

(3) xisay.
Each of these statements has form—the same form; statements (1) and (2)
have content as well as form; statement (3) has form only. Clearly, state-
ments (1) and (2) are propositions, one true and the other false. Equally
clearly, statement (3) is not a proposition, for, since it asserts nothing definite,
it is neither true nor false, and a proposition, by definition, is a statement
which is true or false. Statement (3), however, though not a proposition,
does have the form of a proposition. It has been called a propositional
Sunction, for if in the form

xisay,

we substitute terms of definite meaning for the variables x and y, we may
obtain propositions, true propositions if the substituted terms should verify
the propositional function, false propositions if the substituted terms should
falsify the propositional function. It is apparent that some substitutions for
x and y convert the propositional function into so much nonsense; such
meanings for the variables are considered inadmissible. The form considered
above is a propositional function in two variables, and it has infinitely
many verifiers.

A propositional function may contain any number of variables. An
example having but one is: x is a volume in the Library of Congress. Here
x evidently has as many verifying values as there are volumes in the Library
of Congress. Evidently, too, the variable x has many falsifying values.

There is no need for the variables in a propositional function to be denoted
by symbols, such as x, y, ...; they may be ordinary words. Thus, should
a statement whose terms are ordinary words appear in a discourse with no
indication as to the senses in which the words are to be understood, then
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in that discourse the statement is really a propositional function, rather
than a proposition, and in the interests of clarity the ambiguous or un-
defined terms might better be replaced by such symbols as x, y, . ...

With the idea of a propositional function firmly in mind, let us return to
a discussion of axiomatic procedure. We recall that any logical discourse,
in an endeavor to be clear, tries to define explicitly the elements of the
discourse, the relations among these elements, and the operations to be
performed upon them. Such definitions, however, must employ other
elements, relations, and operations, and these, too, are subject to explicit
definition. If these are defined, it must again be by reference to further
elements, relations, and operations. There are two roads open to us; either
the chain of definitions must be cut short at some point, or else it must be
circular. Since circularity is not to be tolerated in a logical discourse, the
definitions must be brought to a close at some point; thus it is necessary that
one or more elements, relations, and operations receive no explicit definition.
These are known as the primitive terms of the discourse. There is likewise
an effort logically to deduce the statements of the discourse, and, again, in
order to get started and also to avoid the vicious circle, one or more of the
statements must remain entirely unproved. These are known as the postulates
(or axioms, or primary statements) of the discourse. Clearly, then, any logical
discourse such as we are considering must conform to the following pattern.

Pattern of Formal Axiomatics

(A) The discourse contains a set of technical terms (elements, relations
among elements, operations to be performed on elements) which are
deliberately chosen as undefined terms. These are the primitive terms
of the discourse.

(B) The discourse contains a set of statements about the primitive terms
which are deliberately chosen as unproved statements. These are called
the postulates (or axioms), P, of the discourse.

(C) All other technical terms of the discourse are defined by means of
previously introduced terms.

(D) All other statements of the discourse are logically deduced from
previously accepted or established statements. These derived state-
ments are called the theorems, T, of the discourse.

(E) For each theorem T; of the discourse there exists a corresponding
statement (which may or may not be formally expressed) asserting
that theorem T; is logically implied by the postulates P. (Often a
corresponding statement appears at the end of the proof of the
theorem in some such words as, ‘“Hence the theorem,” or  This
completes the proof of the theorem”; in some elementary geometry
textbooks the statement appears, at the end of the proof of the
theorem, as ‘“Q.E.D.” (Quod erat demonstrandum). The modern
symbol |, or some variant of it, suggested by Paul R. Halmos, is
frequently used to signalize the end of a proof.)
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The first thing to notice in the above pattern is that the primitive terms,
being undefined terms, might just as well (if such is not already the case)
be replaced by symbols like x, y, .... Let us suppose this substitution is
made. Then the primitive terms are clearly variables. The second thing to
notice is that the postulates, P, since they are statements about the primitive
terms, are nothing less than propositional functions. And the third thing
to notice is that the theorems, T, since they are but logical implications of
the postulates P, also are propositional functions. We are thus brought to
a fact of cardinal importance, namely, that once the primitive terms are
realized to be variables, both the postulates and the theorems of a logical
discourse are not propositions but propositional functions.

Since the postulates and the theorems of a logical discourse are proposi-
tional functions, that is, are statements of form only and without content,
it would seem that the whole discourse is somewhat vacuous and entirely
devoid of truth or falseness. Such, however, is not the case, for by (E) of
the postulational pattern we have the all-important statement,

(F) The postulates P imply the theorems 7.

Now (F) asserts something definite; it is true or false, and so is a proposition
—a true one if the theorems T are in fact implied by the postulates P, and
a false one if they are not. The statement (F) is precisely what the discourse
is designed for; it is the discourse’s sole aim and excuse for being.

A discourse conducted according to the above pattern has been called,
by some mathematicians, a branch of pure mathematics, and the grand total
of all such existing branches of pure mathematics, the pure mathematics
of to-date.

If, for the variables (the primitive terms) in a branch of pure mathematics
we should substitute terms of definite meaning which convert all the postu-
lates of the branch into true propositions, then the set of substituted terms
is called an interpretation of the branch of pure mathematics. The inter-
pretation will also, provided all deductions have been correctly performed,
convert the theorems of the discourse into true propositions. The result of
such an interpretation is called a model of the branch of pure mathematics.

A model of a branch of pure mathematics has been called a branch of
applied mathematics, and the grand total of all existing branches of applied
mathematics, the applied mathematics of to-date. Thus the difference between
applied and pure mathematics is not one of applicability and inapplicability,
but rather of concreteness and abstractness. Behind every branch of applied
mathematics lies a branch of pure mathematics, the latter being an abstract
development of what formerly was a concrete development. It is conceivable
(and indeed such is often the case) that a single branch of pure mathematics
may have several models, or associated branches of applied mathematics.
This is the “economy” feature of pure mathematics, for the establishment
of a branch of pure mathematics automatically assures the simultaneous
establishment of all of its branches of applied mathematics.
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The abstract development of some branch of pure mathematics is an
instance of formal axiomatics, whereas the concrete development of a given
branch of applied mathematics is an instance of material axiomatics. In the
former case we think of the postulates as prior to any specification of the
primitive terms, and in the latter we think of the objects that interpret the
primitive terms as being prior to the postulates. In the former case a postulate
is simply a basic assumption about some undefined primitive terms; in the
latter case a postulate expresses some property of the basic objects which
is taken as initially evident. This latter is the older view of a postulate, and
was the view held by the ancient Greeks. Thus, to the Greeks, geometry was
thought of as a study dealing with a unique structure of physical space, in
which the elements points and lines are regarded as idealizations of certain
actual physical entities, and in which the postulates are readily accepted
statements about these idealizations. From the modern point of view,
geometry is a purely abstract study devoid of any physical meaning or
imagery.

The notion of pure mathematics gives considerable sense to Bertrand
Russell’s facetious remark that * mathematics may be defined as the subject
in which we never know what we are talking about, nor whether what we
are saying is true.” It also accords with Henri Poincaré’s saying that mathe-
matics is ‘“‘the giving of the same name to different things,” and with
Benjamin Peirce’s (1809-1880) remark that ‘mathematics is the science
which draws necessary conclusions.”

PROBLEMS

1. (a) Construct an example of a propositional function containing three variables.
(b) Obtain, by appropriate substitutions, three true propositions from the
propositional function.

(c) Obtain, by appropriate substitutions, three false propositions from the
propositional function.

2. Consider the following postulate set, in which bee and hive are primitive terms:

P1: Every hive is a collection of bees.

P2: Any two distinct hives have one and only one bee in common.
P3: Every bee belongs to two and only two hives.

P4: There are exactly four hives.

Deduce the following theorems:

T1: There are exactly six bees.
T2: There are exactly three bees in each hive.
T3: For each bee there is exactly one other bee not in the same hive with it.
3. Consider a set K of undefined elements, which we shall denote by lower case
letters, and let R denote an undefined dyadic relation (that is, a relation connect-
ing two elements) which may or may not hold between a given pair of elements
of K. If element a of K is related to element b of K by the R relation we shall
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write @ R b. We now assume the following four postulates concerning the
elements of K and the dyadic relation R.

P1: If a and b are any two distinct elements of K, then either a R b or b R a.

P2: If a and b are any two elements of K such that a R b, then a and b are
distinct.

P3: If a, b, c are any three elements of K such thata Rband b Rc,thena R c.

P4: K consists of exactly four distinct elements.

Deduce the following seven theorems from the above four postulates.

T1:If a R b, then we do not have b R a.

T2: If a R b and if ¢ is distinct from a, then either a Rcor ¢ R b.

T3: There is at least one element of K not R-related to any element of K.
(This is an existence theorem.)

T4: There is only one element of K not R-related to any element of K. (This is
a uniqueness theorem.)

Definition 1. If b R a, we say a D b.

T5:IfaDband b Dc,thena D c.

Definition 2. If @ R b and there is no element ¢ such that alsoa Rcand ¢ R b,
then we say a F b.

Té6:If a F c and b F ¢, then a and b are identical.

T7:If a Fb and b F ¢, then we do not have a F c.

Definition 3. If @ Fb and b F ¢, then we say a G c.

4. (a) Establish the following theorem of the branch of pure mathematics of
Problem 3 above: Ifa G candb G c, thena = b.
(b) Define the triadic relation B(abc) to mean either (a Rband b Rc)or(c Rb
and b R a). Now prove: If B(abc) holds, then B(acb) does not hold.

5. Consider the following set of postulates about a certain collection S of primitive
elements and certain primitive subcollections of S called m-classes:

Pl: If a and b are distinct elements of S, then there is one and only one
m-class containing a and b.

D1: Two m-classes having no elements in common are called conjugate
m-classes.

P2: For every m-class there is one and only one conjugate m-class.

P3: There exists at least one m-class.

P4: Every m-class contains at least one element of S.

P5: Every m-class contains only a finite number of elements of S.

Establish the following theorems:

T1: Every m-class contains at least two elements.
T2: S contains at least four elements.

T3: S contains at least six m-classes.

T4: No m-class contains more than two elements.

6. Construct all geometries satisfying the following postulates:

P1: Space S is a set of n points, n a positive integer.

P2: A line.is a non-null subset of S.

P3: Any two distinct lines have exactly one common point.
P4: Every point lies in exactly two distinct lines.
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8.4 METAMATHEMATICS

It must not be thought, in building up a branch of pure mathematics, that
we may set down a collection of symbols for undefined terms and then list
for postulates an arbitrary system of assumed statements about these terms.
There are certain required and certain desired properties which our system
of assumed statements—our postulates—should possess. This section will
accordingly be devoted to a brief examination of some of the properties
of postulate sets. Such a study is technically known as metamathematics,
and was first brought into prominence by Hilbert’s Grundlagen der Geometrie.
Of the properties of postulate sets, we shall consider the four known as
equivalence, consistency, independence, and categoricalness. The first property
applies to pairs of postulate sets, and the remaining three apply to individual
postulate sets.

Two postulate systems P*) and P® are said to be equivalent if each
system implies the other, that is, if the primitive terms in each are definable
by means of the primitive terms of the other, and if the postulates of each
are deducible from the postulates of the other. If two postulate systems are
equivalent, then the two abstract studies implied by them are, of course, the
same, and it is merely a matter of ““saying the same thing in different ways.”
The idea of equivalent postulate systems arose in ancient times when ge-
ometers, dissatisfied with Euclid’s parallel postulate, tried to substitute for
it a more acceptable equivalent. The modern studies of Euclidean geometry,
with their various and quite different postulational bases, clearly illustrate
that a postulate system is by no means uniquely determined by the study
in question, but depends upon which technical terms of the study are
chosen as primitive and which statements of the study are taken as
unproved.

A postulate set is said to be consistent if contradictory statements are not
implied by the set. This is the most important and most fundamental property
of a postulate' set; without this property the postulate set is worthless.

The most successful method so far invented for establishing consistency
of a postulate set is the method of models. A model of a postulate set, recall,
is obtained if we assign meanings to the primitive terms of the set which
convert the postulates into true statements about some concept. There are
two types of models—concrete models and ideal models. A model is said
to be concrete if the meanings assigned to the primitive terms are objects
and relations adapted from the real world, whereas a model is said to be
ideal if the meanings assigned to the primitive terms are objects and relations
from some other postulate system.

Where a concrete model has been exhibited we feel that we have estab-
lished the absolute consistency of our postulate system, for if contradictory
theorems are implied by our postulates, then corresponding contradictory
statements would hold in our concrete model. But contradictions in the
real world we accept as being impossible.
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It is not always feasible to try to set up a concrete model of a given postulate
set. Thus, if the postulate set contains an infinite number of primitive ele-
ments, a concrete model would certainly be impossible, for the real world
does not contain an infinite number of objects. In such instances we attempt
to set up an ideal model, by assigning to the primitive terms of postulate
system A, say, concepts of some other postulate system B, in such a way
that the interpretations of the postulates of system A are logical consequences
of the postulates of system B. But now our test of consistency of the postu-
late set 4 can no longer claim to be an absolute test, but only a relative
test. All we can say is that postulate set 4 is consistent if postulate set B
is consistent, and we have reduced the consistency of system A to that of
another system B.

Relative consistency is the best we can hope for when we apply the
method of models to many branches of mathematics, for many of the
branches of mathematics contain an infinite number of primitive elements.
This is true, for example, of plane Lobachevskian geometry. In the next
section we shall, however, by setting up a model of plane Lobachevskian
geometry within plane Euclidean geometry, show that the former geometry
is consistent if the latter geometry is.

A postulate of a postulate set is said to be independent if it is not a logical
consequence of the other postulates of the set, and the entire postulate set
is said to be independent if each of its postulates is independent. The most
famous consideration in the history of mathematics of the independence of
a postulate is that associated with the study of Euclid’s parallel postulate.
For centuries mathematicians had difficulty in regarding the parallel postulate
as independent of Euclid’s other postulates (and axioms), and accordingly
made repeated attempts to show that it was a consequence of these other
assumptions. It was the discovery of, and the ultimate proof of the relative
consistency of, Lobachevskian non-Euclidean geometry that finally estab-
lished the independence of Euclid’s parallel postulate. In fact, it is no exag-
geration to say that the historical consideration of the independence of
Euclid’s parallel postulate is responsible for initiating the entire study of
properties of postulate sets and hence for shaping much of the modern
axiomatic method.

A test for the independence of a postulate consists in finding an inter-
pretation of the primitive terms which fails to verify the concerned postulate
but which does verify each of the remaining postulates. If we are successful
in finding such an interpretation, then the concerned postulate cannot be
a logical consequence of the remaining postulates, for if it were a logical
consequence of the remaining postulates, then the interpretation which
converts all the other postulates into true propositions would have to con-
vert it also into a true proposition. A test, along these lines, of the inde-
pendence of an entire set of postulates can apparently be a lengthy business,
for if there are n postulates in the set, n separate tests (one for each postulate)
will have to be formulated.
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Independence of a postulate set is by no means necessary, and a postulate
set clearly is not invalidated just because it lacks independence. Generally
speaking, a mathematician prefers a postulate set to be independent, for he
wants to build his theory on a minimum amount of assumption. A postulate
set which is not independent is merely redundant in that it contains one or
more statements which can appear as theorems instead of as postulates.
Sometimes, for pedagogical reasons, it may be wise to develop a subject
from a postulate set which is not independent—for example, in developing
plane geometry in high school from a postulational foundation.

There are some well-known postulate sets which, when first published,
unknowingly contained postulates that were not independent. Such was the
situation with Hilbert’s original set of postulates for Euclidean geometry.
This set was later shown to possess two postulates which are implied by
the others. The finding of these two dependent postulates in no way invali-
dated Hilbert’s system; in a subsequent amendment these postulates were
merely changed to theorems, and their proofs supplied.

Similarly, R. L. Wilder was able to show that R. L. Moore’s famous set
of eight postulates, which virtually inaugurated modern set-theoretic topoi-
ogy, could be reduced to seven by the elimination of Moore’s sixth postulate.
The suspicion that the sixth postulate was not independent arose from the
fact that the independence proof for this postulate was found to be at fault,
and a subsequent search for a satisfactory proof turned out to be fruitless.
Of course, Moore’s mathematical theory remained intact in spite of Wilder’s
discovery, but the reduction of an eight-postulate system to an equally
effective seven-postulate system has an aesthetic appeal to the mathematician.

The property of categoricalness is more recondite than the three properties
already described, and we must precede its definition by first introducing
the notion of isomorphic interpretations of a postulate system.

Among the primitive terms of a postulate set P we have a collection of
E’s, say, which denote elements, perhaps some relations R;, R,, ... among
the elements, and perhaps some operations Oy, O,, ... upon the elements.
Accordingly, an interpretation of the postulate set is composed at least in
part by element constants (the meanings assigned to the E’s), perhaps in
part of relation constants (the meanings assigned to the R’s), and perhaps
in part of operation constants (the meanings assigned to the O’s). Now in
any given interpretation I of P, let a collection of e’s be the element constants
(representing the E’s), ry, r,, ... the relation constants (representing the
R’s), and o4, 0,, ... the operation constants (representing the O’s); and in
any other interpretation I’ of P let the element constants be a collection of
e’’s, the relation constants be rj, r;, ..., and the operation constants be
0}, 05, . ... If it is possible to set up a one-to-one correspondence between
the elements e of I and the elements e’ of I’ in such a way that, if two or
more of the e’s are related by some r, the corresponding e”’s are related by
the corresponding r’, and if an o operating on one or more of the e’s yields
an e, the corresponding o’ operating on the corresponding e’’s yields the
corresponding e’, then we say that the two interpretations / and I’ of P are
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isomorphic. This definition is often more briefly stated by saying that two
interpretations [ and I’ of a postulate set P are isomorphic if one can set up
a one-to-one correspondence between the elements of I and those of I’ in
such a way as ““to be preserved by the relations and the operations of P.”
It follows that if two interpretations 7 and I’ of a postulate set P are iso-
morphic, then any true (false) proposition p in interpretation / becomes a
true (false) proposition p’ in interpretation I’ when we replace the e’s, r’s,
and o’s in p by their corresponding e’’s, r”’s, and o”’s. Two isomorphic
interpretations of a postulate set P are, except for superficial differences in
terminology and notation, identical; they differ from each other no more
than does the multiplication table up to 10 x 10 when correctly written first
in English and then in French.

With the notion of isomorphic interpretations of a postulate set established,
we are prepared to define categoricalness of a postulate set. A postulate
set P, as well as the resulting branch of mathematics, is said to be categorical
if every two interpretations of P are isomorphic.

Categoricalness of a postulate set is usually established by showing that
any interpretation of the postulate set is isomorphic to some given inter-
pretation. This procedure has been applied to Hilbert’s postulate set for
plane Euclidean geometry; it can be shown that any interpretation of
Hilbert’s postulates is isomorphic to the algebraic interpretation provided
by Descartes’ analytic geometry. Plane Lobachevskian geometry has also
been shown to be a categorical system.

There are advantages and disadvantages in having a system categorical.
Perhaps the most desirable feature of a noncategorical postulate set is its
wide range of applicability—there is not essentially only one model for the
system. For example, the theorems of absolute plane geometry—those
theorems common to Euclidean and Lobachevskian plane geometry—may
be obtained from Hilbert’s postulate set for Euclidean plane geometry with
the parallel postulate deleted. This truncated postulate set is, of course,
noncategorical; it is satisfied by nonisomorphic interpretations. One advan-
tage of categoricalness, on the other hand, is that often theorems of a
categorical system may be more easily established by establishing their
counterparts in some model. Thus, in Section 8.5 we shall obtain a model
of Lobachevskian plane geometry within Euclidean plane geometry; since
Lobachevskian plane geometry is a categorical system, and since we are
much more conversant with Euclidean plane geometry than with Lobachev-
skian plane geometry, there arises the very real possibility of establishing
theorems in the Lobachevskian plane geometry by establishing their counter-
parts in the Euclidean model. We shall illustrate this procedure in Section 8.6.

PROBLEMS

1. If p, q, r represent propositions, show that the following set of four statements
is inconsistent:
(1) If g is true, then r is false.
(2) If g is false, then p is true.

8.4 Metamathematics
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(3) ris true.

(4) p is false.
Compare the concept of consistency and inconsistency of a set of simultaneous
equations with the concept of consistency and inconsistency of a postulate set.

. (a) Show that the postulate set of Problem 2, Section 8.3, is absolutely con-

sistent.
(b) Show that Postulates P2, P3, P4 of Problem 2, Section 8.3, are independent.
(c) Show that the postulate set of Problem 2, Section 8.3, is categorical.

. (a) Establish the absolute consistency of the postulate set of Problem 3,

Section 8.3 by means of each of the following interpretations:

1. Let K consist of a man, his father, his father’s father, and his father’s
father’s father, and let a R b mean “gq is an ancestor of 5.”

2. Let K consist of four distinct points on a horizontal line, and let a R b
mean ‘““a is to the left of 5.”

3. Let X consist of the four integers 1, 2, 3, 4, and let a R b mean “a < b.”
(b) Write out statements of the theorems and definitions in Problem 3, Section
8.3, for each of the interpretations of part (a), thus obtaining three branches of
applied mathematics from the one branch of pure mathematics.

. Establish the independence of the postulate set of Problem 3, Section 8.3,

by means of the following four partial interpretations:
1. Let K consist of two brothers, their father, and their father’s father, and
let a R b mean “a is an ancestor of b.”
2. Let K consist of the four integers 1, 2, 3, 4, and let a R b mean “aq < b.”
3. Let K consist of the four integers 1, 2, 3, 4, and let a R b mean “a # b.”
4. Let K consist of the five integers 1, 2, 3,4, 5, and let a R b mean “a < b.”

. Show that, in Problem 3, Section 8.3, P1, T1, P3, P4 constitute a postulate

set equivalent to P1, P2, P3, P4.

. Show that the postulate set of Problem 3, Section 8.3, is categorical.
. Clearly, if a postulate p of a consistent postulate set P contains a primitive

term which is not among the primitive terms occurring in any other postulates
of P, then p is independent.

(a) Using the above principle, show that the additional postulate: ““All hives
lie in the same apiary,” where apiary is a primitive term, is independent of the
four postulates of Problem 2, Section 8.3.

(b) Also show the independence of the additional postulate by the method
of models.

. Show that the postulate set of Problem 5, Section 8.3, is categorical.
10.

Let S be a set of elements and F a dyadic relation satisfying the following
postulates:

P1: If a and b are elements of S and if b F a, then we do not have a F b.

P2: If a is an element of S, then there is at least one element b of S such that
b Fa.

P3: If a is an element of S, then there is at least one element b of .S such
that a F b.

P4: If a, b, c are elements of S such that b Fa and ¢ F b, then ¢ F a.

P5: If a and b are elements of S such that b F a, then there exists at least one
element of ¢ of S such that c Faand b Fc.
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Show that the statement, “If a is an element of S, then there is at least one
element b of S, distinct from a, such that we do not have b F a and we do not
have a F b,” is both consistent with and independent of the above postulates.

(This set of postulates, augmented by the above statement, has been used in
relativity theory, where the elements of S are interpreted as instants of time and
F as meaning “follows.”*)

8.5 THE POINCARE MODEL AND THE CONSISTENCY
OF LOBACHEVSKIAN PLANE GEOMETRY

A satisfactory postulate set for Lobachevskian plane geometry may be
obtained from the Hilbert postulate set for plane Euclidean geometry by
simply replacing the postulate of parallels (Postulate IV-1) by

IV'=1 Through a given point A not on a given line m there pass at least
two lines which do not intersect line m.

Developments of Lobachevskian plane geometry have been made using such
a postulate set as a foundation.t

It is our purpose, in the present section, to show that Lobachevskian
plane geometry is consistent if Euclidean plane geometry is consistent. To
accomplish this we shall represent the primitive terms of Lobachevskian
plane geometry by certain entities of Euclidean plane geometry which, when
substituted for the primitive terms in the postulates of Lobachevskian plane
geometry, will convert these postulates into theorems of Euclidean plane
geometry. In other words, we shall give an interpretation of Lobachevskian
plane geometry within Euclidean plane geometry. The interpretation that
we shall employ was devised by Henri Poincaré, and leads to the so-called
Poincaré model of Lobachevskian plane geometry.

We choose a fixed circle £ in the Euclidean plane and call it the funda-
mental circle, and then set up in the Euclidean plane the following repre-
sentations of the primitive terms of Lobachevskian plane geometry (see
Figure 8.5a). For clarity we designate the representations by means of bold-
face type.

point: point in the interior of £

line: the part interior to T of any “circle” (straight line or circle) ortho-
gonal to X

point on a line (line through a point, line containing a point): the obvious
interpretation

point between two points: the obvious interpretation

* See A. A. Robb, A Theory of Time and Space. New York: Cambridge University Press,
1914.

1 See, for example, G. Verriest, Introduction a la géométrie non-Euclidienne par la méthode
élémentaire. Paris: Gauthier-Villars, 1951.

8.5 The Poincaré Model and the Consistency of Lobachevskian Plane Geometry
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Figure 8.5a

DEFINITION. length of segment AB = log (AB,TS) = log [(AT/BT)(BS/AS)],
where S and T are the points in which the ““circle” containing the segment
AB cuts X, S and T being labeled so that A is between S and B. It should
be noted that (4B,TS) > 1, whence log (4B,TS) > 0.

DEFINITION. measure of an angle between two intersecting lines = radian
measure of the angle between the two “circles” containing the two lines.

congruent segments: segments of equal length
congruent angles: angles of equal measure

We now show that, with the above representations, the postulates for
Lobachevskian plane geometry become theorems in Euclidean plane ge-
ometry; it will be noted that many of the resulting theorems are obvious.

Group | : Postulates of Connection

I-1. There is one and only one line passing through any two given distinct points.
This is Theorem 2.9.5.

I-2. Every line contains at least two distinct points, and for any given line
there is at least one point not on the line.
Obvious.

Group Il : Postulates of Order

II-1. If point C is between points A and B, then A, B, C are all on the same
line, and C is between B and A, and B is not between C and A, and A is not
between C and B.

Obvious.

I1-2. For any two distinct points A and B there is always a point C which is
between A and B, and a point D which is such that B is between A and D.
Obvious.

I1-3. If A, B, C are any three distinct points on the same line, then one of
the points is between the other two.
Obvious.
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Figure 8.5b

II-4. (Pasch’s Postulate) A line which intersects one side of a triangle but
does not pass through any of the vertices of the triangle must also intersect
another side of the triangle.

Obvious, because of I-1.

Group lll: Postulates of Congruency

III-1. If A and B are distinct points and if A’ is a point on a line m, then
there are two and only two points B’ and B” on m such that the pair of points
A’, B’ is congruent to the pair A, B and the pair of points A’, B” is congruent
to the pair A, B; moreover, A’ is between B’ and B".

We note (see Figure 8.5b) that (A4'T'/B'T')(B'S’/A’S’) increases con-
tinuously from 1 to oo as B’ moves along m from A4’ to T'. Similarly,
(A4'S’|B"S")(B"T'|A'T’) increases continuously from 1 to co as B” moves
along m from A’ to S'. It follows that length 4’B’ and length A’B” increase
continuously from O to oo in the two cases. There are therefore unique
positions of B’ and B” such that length A'B’ = length A’B” = length AB.

III-2. If two pairs of points are congruent to the same pair of points, then
they are congruent to each other.
Obvious.

III-3. If point C is between points A and B and point C’ is between points
A’ and B’, and if the pair of points A, C is congruent to the pair A’, C', and
the pair of points C, B is congruent to the pair C', B’, then the pair of points
A, B is congruent to the pair A’, B'.

For we have (see Figure 8.5¢)

length AB = log[(AT/BT)(BS/AS)]
= log[(AT/CT)(CS/AS)(CT/BT)(BS/CS)]
= log[(AT/CT)(CS/AS)] + log[(CT/BT)(BS/CS)]
= length AC + length CB.

Similarly, length A’B’ = length A’C’ + length C’'B’. But length AC = length
A’C’ and length CB = length C'B’. Therefore length AB = length 4’B’, and
AB is congruent to A'B’.

8.5 The Poincaré Model and the Consistency of Lobachevskian Plane Geometry
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Figure 8.5c

I11-4. If BAC is an angle whose sides do not lie in the same line, and if
A’ and B’ are two distinct points, then there are two and only two distinct
rays A'C’' and A'C’, such that angle B’A’C’ is congruent to angle BAC and
angle B'A’C” is congruent to angle BAC; moreover, if D’ is any point on
the ray A’C’ and D" is any point on the ray A’'C", then the segment D'D”
intersects the line determined by A’ and B'.

This is a consequence of Theorem 2.9.6.

I11-5. Every angle is congruent to itself.
Obvious.

Lemma. Length AB is invariant under inversion in any circle orthogonal
to X.

Let A’, B’ be the inverses of 4, B for a circle orthogonal to ¥ and note
that 4’, B’ lie inside X. Then (see Figure 8.5d)

length 4'B’ =log (A'B’,T'S")
= log (4B, TS) (by Theorem 3.7.6)
= length 4B.

Figure 8.5d
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Figure 8.5e

I11-6. If two sides and the included angle of one triangle are congruent,
respectively, to two sides and the included angle of another triangle, then
each of the remaining angles of the first triangle is congruent fo the corre-
sponding angle of the second triangle.

Consider any triangle O’ P’'Q’ where, without loss of generality, we assume
O’ is not the center O of I (see Figure 8.5¢), and let the ““circles” along
sides O'P’ and O'Q’ intersect again in C. Invert the figure for C as center
and with a power that carries T into itself. Since the size of an angle is
preserved under inversion, the “circles”” CP’'O’ and CQ’O’ (being orthogonal
to X and passing through the center C of inversion) map into two diametral
lines of X, and triangle O'P'Q’ maps into a triangle OPQ, where OP, OQ
are radial lines of X. Since both measures of angles and lengths of segments
are preserved under inversion, it follows that triangles O'P'Q’ and OPQ
are congruent.

Now let O{P;Q) be any triangle in which length O}P; =length O'P’,
length O;Q' = length O'Q’, and angle P{01Q, = angle P'O’'Q’. As above,
triangle O P Q) is congruent to a triangle OP,Q,, where OP,, OQ, are
radial lines of X. But triangle OP,Q, is congruent (in the Euclidean
sense) to triangle OPQ. Therefore triangle O} P;Q is congruent to triangle
o'PQ'.

Group 1V : Postulate of parallels

IV'-1. Through a given point A not on a given line m there pass at least
two lines which do not intersect line m.

Let the “circle” containing line m cut £ in X and Y (see Figure 8.5f).
Through A draw the unique “circles” orthogonal to £ and passing respec-
tively through X and Y. These ““circles” are distinct, and the desired result
follows.

8.5 The Poincaré Model and the Consistency of Lobachevskian Plane Geometry
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Figure 8.5f z

Alternative Group V

V'-1. If the points of an ordered segment of origin A and extremity B
are separated into two classes in such a way that

(1) each point of AB belongs to one and only one of the classes,

(2) the points A and B belong to different classes (which we shall respectively
call the first class and the second class),

(3) each point of the first class precedes each point of the second class,

then there exists a point C on AB such that every point which precedes C
belongs to the first class and every point which follows C belongs to the second
class.

Invert with respect to any point D not on the segment 4B but on the
“circle” containing segment 4B. Then the ordered segment 4B becomes a
similarly ordered straight line segment A’B’. The reader can easily complete
the proof.

We may now consider that the purpose of this section—to show that
Lobachevskian plane geometry is consistent if Euclidean plane geometry
is consistent-—has been accomplished. For, should there be any inconsistency
in the Lobachevskian plane geometry, there would have to be a correspond-
ing inconsistency in the Euclidean plane geometry of the Poincaré model.

Assuming Euclidean plane geometry is consistent, we have not only
established the consistency of Lobachevskian plane geometry, but we have
shown that the Euclidean parallel postulate is independent of the other
postulates of Euclidean geometry. For in the Poincaré model we have an
interpretation of part of plane Euclidean geometry that falsifies the Euclidean
parallel postulate but verifies all the other Euclidean postulates. If the
Euclidean parallel postulate were implied by the other Euclidean postulates,
then it too would have to hold in the model. Since we have seen that it
does not, and since we are assuming Euclidean geometry to be consistent,
it follows that the Euclidean parallel postulate cannot be implied by the
other Euclidean postulates, and is thus independent of them.

Of course, a satisfactory proof of the consistency of Euclidean plane
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geometry has never been given except (as we shall see in the second volume
of our work) by referring back to the concepts of analytic geometry and
hence ultimately to the real number system, whose consistency, in turn, is
an open question.

PROBLEMS

1. Establish the interpretation of I-1 by inverting the figure with respect to a point
on X.

. Show how the interpretation of I-1 proves the interpretation of 1I-4.

. Show how the interpretation of III-4 is a consequence of Theorem 2.9.6.

. Complete the proof of the interpretation of V’-1.

(a) Show that an oblique circular cone possesses circular sections whose planes

are not parallel to the plane of the generating circle of the cone.

(b) Show that two circles in different planes but sharing a common diameter

are projectively related by a parallel perspectivity.

(¢) Show that there exist infinitely many projectivities which map a circle and

its interior onto the same circle and its interior.

6. We describe a model of Lobachevskian plane geometry that was devised by

Felix Klein (1849-1929).
Choose a fixed circle X in the Euclidean plane and set up the following
representations of the primitive terms of Lobachevskian plane geometry:

YA W N

point: point in the interior of £

line: chord of

point on a line: the obvious interpretation

point between two points: the obvious interpretation

congruent segments: segments which can be mapped onto one another by a
projectivity of £ and its interior onto itself

congruent angles: angles which can be mapped onto one another by a
projectivity of X and its interior onto itself

Verify, in the Klein model, the Hilbert postulates for Lobachevskian plane
geometry.
7. Show that, in the Klein model, we may define the length of segment 4B as log
(AB,TS), where S and T are the points in which the chord containing segment
AB cuts X, S and T being labeled so that A4 is between S and B.

8.6 DEDUCTIONS FROM THE POINCARE MODEL

If a model of a categorical system 4 has been formed within another system
B, it is conceivable that some theorems of system A might be more readily
established by demonstrating their counterparts in system B—especially if
one is more familiar with system B than with system 4. Now the Poincaré
model is a model of Lobachevskian plane geometry within Euclidean plane
geometry. Since we are more familiar with Euclidean plane geometry than
with Lobachevskian plane geometry, the idea of trying to establish some

8.6 Deductions from the Poincaré Model
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Figure 8.6a Y > o\M J| K w

theorems of Lobachevskian plane geometry by establishing their counter-
parts in the model suggests itself. It is the purpose of the present section to
illustrate this procedure. In addition to establishing quite simply from the
Poincaré model a few difficult theorems of Lobachevskian plane geometry, we
shall show how Lobachevskian trigonometry can be derived from the model.*

As in the proof of the interpretation of III-6 in the previous section, any
triangle O'P’'Q’, right-angled at Q' is (see Figure 8.6a) congruent to a triangle
OPQ, where OP, OQ are along radii of the fundamental circle £ and angle
OQP = 72 radians. Let the circle IT determined by line PQ cut X in .S and
T and let IOQJ be a diameter of X, cutting IT again in W. We now establish
a short chain of theorems connected with Figure 8.6a. For brevity we shall
denote the length of a segment 4B by AB. Since the measure of an angle
is the same as the Euclidean measure of the corresponding angle, boldface
type is not needed here.

8.6.1 THeorReM. If WS and WT cut T again in U and V, then UV is the
diameter of T perpendicular to diameter 1J.

Select W as center of inversion and choose a power such that ¥ inverts
into itself. Then S inverts into U, and T into V. Since II is orthogonal to
both X and 1J, it follows that UV is the diameter of ¥ perpendicular to
diameter 1J.

8.6.2 THEOREM. Let WP cut UV in R, and designate the lengths of OW
and OR by m and n, and the radius of £ by r. Let K be the center of Tl and
let M and N be the feet of the perpendiculars dropped from P on OW and
OR respectively. Then

(a) KP = (m® — r?)/2m,

(b) OM = m(n? + r?)/(m* + n?),

(C) OP = (m2n2 + 1'4)1/2(11’12 + 1'12)1/2,

(d) 0Q = r*/m.

* See Howard Eves and V. E. Hoggatt, Jr., “Hyperbolic trigonometry derived from the
Poincaré model,” The American Mathematical Monthly, vol. LVIII, no. 7, Aug.-Sept., 1951.
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Since KP = OW — OK = m — (r* + KP*)!/2, it follows that
KP = (m? — r?)/2m.
Also, since tan PWO = n/m, and since ¥ PKO =2 X PWO, it follows that
tan PKO = 2mn/(m? — n?), sin PKO = 2mn/(m?* + n?).
Therefore
OM = NP = (OW)(NR)/OR = m(n — MP)/n = m(n* + r?)|(m* + n?).
Then

OP? = MP?* + OM? = (m?n? + r*)/(m* + n?).
Finally,

0Q = OW —2KP = m — 2(m* — r?)2m = r*/m.

8.6.3 THEOREM. The segments OP, OQ, OR are connected by the relation
r’ + OP* 1? + OR? r?+0Q?
12— OP? r?—-OR? r?-0Q%

For, by Theorem 8.6.2 (c),

r2 + 0P2 B r2(m2 + nZ) + m2n2 + r4 B (r2 + n2)(m2 + r2)

2 _ op? - r2(m2 + n2) — mn? — - ("2 _ nZ)(mZ _ r2)
r’+n? r24+r¥m®* r*+ OR? r? 4+ 0Q?
T r2 —r*im*  r* — OR? 2 00?%’

since OR = n, and, by Theorem 8.6.2 (d), OQ = r?/m.

8.6.4 DEFINITIONS AND NOTATION. For any real x we define

sinh x = (¢* — e™)/2, cosh x = (e* + e7%)/2,
tanh x = sinh x/cosh x,

where sinh, cosh, and tanh are abbreviations for hyperbolic sine, hyperbolic
cosine, and hyperbolic tangent.

8.6.5 THEOREM. If OQ is any radial segment of X, then
() cosh OQ = (r* + 0Q?)/(r* — 0Q?),
(b) sinh OQ = 2rOQ/(r* — 0Q?),
(c) tanh OQ = 2rOQ/(r? + 0Q?).
For, since OQ = log (0Q,1J), we have
cosh OQ = (%2 + ¢799))2
=[(0Q.1)) + (0Q,JD)])2
= [(01/1Q)/(0J]JQ) + (0J]JQ)/(01]1Q)]/2
= (QJ/1Q + 1Q/QJ)[2
=[(r — 0Q)/(r + 0Q) + (r + 0Q)/(r — 0Q)]/2
= (r*+ 00)/(r* — 00%,

8.6 Deductions from the Poincaré Model
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which is relation (a). Relations (b) and (c) follow in a similar manner, or
from the identities sinh? x = cosh? x — 1 and tanh x = sinh x/cosh x.

8.6.6 THEOREM. In Figure 8.6a, cosh OP = cosh OQ cosh QP.

As an immediate consequence of Theorems 8.6.3 and 8.6.5 (a) we have

cosh OP = cosh OQ cosh OR.

But, by Theorem 8.6.1, (QP,ST) = W(QP,ST) = (OR,UV), whence OR =
QP, and the theorem is established.
8.6.7 THEOREM. In Figure 8.6a, cos QOP = tanh OQ/tanh OP.

For, by Theorem 8.6.5 (c),

tanh OQ/tanh OP = 0Q(r? + OP?)/OP(r* + 0Q?).

Substituting the expressions for OP and OQ as given by Theorem 8.6.2 (c)
and (d), and simplifying, we find
tanh OQ/tanh OP = m(r? + n?)/(m*n* + r*)!/%(m? + n?)!/2
= [m(r* + n*)[(m* + n))[(m*n® + r*)'2[(m* + n*)'1?]
= OM/OP (by Theorem 8.6.2 (b) and (c))
= cos QOP,

and the theorem is established.

8.6.8 REMARK. Theorems 8.6.6 and 8.6.7 say that in any Lobachevskian
right triangle 4BC, right-angled at C, we have

cosh ¢ = cosh a cosh b, cos 4 = tanh b/tanh c,

where a, b, ¢ are the sides opposite angles A, B, C respectively. From these
two formulas, all the other formulas of Lobachevskian trigonometry can
be obtained by purely analytical procedures.

We now use the Poincaré model to re-establish in a simple way two of
our former theorems (Theorem 7.4.5 and Theorem 7.6.1) and a new theorem
giving the relation between the angle of parallelism of a point P for a line
AB and the distance of point P from line AB.

8.6.9 THEOREM. The sum of the angles of a Lobachevskian triangle is
always less than two right angles.

As in the proof of the interpretation of III-6 in the previous section, any
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Figure 8.6b

triangle is congruent to a triangle OPQ, where O is the center of the funda-
mental circle £ and OP, OQ are radial lines of . But for this triangle it is
obvious that the angle-sum is less than two right angles.

8.6.10 THEOREM. Two hyperparallel lines have a unique common per-
pendicular.

Let m and n (see Figure 8.6b) be two hyperparallel lines. The radical
center R of the three * circles ” X, m, n lies outside X ; hence the three “ circles ”
have a radical circle, which is the unique circle orthogonal to each of X,
m, and n. This proves the theorem.

8.6.11 THEOREM. If a is the angle of parallelism for distance p, then
e P = tan a/2.

Let the “circle” containing the perpendicular from the given point P to
the given line m and the ““circle”” containing the given line m intersect again
in R (see Figure 8.6c). Then R is outside £ and Q and R are collinear with
the center of Z. Invert the figure with respect to R as center of inversion
and such that ¥ inverts into itself. Then arcs PQ and m invert into straight

Figure 8.6¢ A/
S
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line segments perpendicular to each other, and Q inverts into the center of
¥, as shown in Figure 8.6d. In this figure we have

o+ 2f=m/2, or B =nf4—a
Now, taking  of unit radius, we have

1
p = log(P'Q'.T'S") = log(P'T'|P'S") = log 120
1 —tanp
whence
1=~ tanoj2
o P = 1 —tan(n/4 — o/2) 1 + tan /2
1 +tan(n/4 —o/2) .  1—tana/2
1+ ——
1 + tan a/2
_l+tang2—1+4tana2 tan 72
“1+tano2+1—tana2 T
Sl
8
Figure 8.6d -
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8.6.12 REeMARK. Note that p =log cot «/2 and « =2 tan~' e~?. It fol-
lows that we have chosen our unit of length to be the distance corresponding
to 2 tan~!(1/e) as the angle of parallelism. We see that, in Lobachevskian
geometry, lengths and areas are absolute. With every linear segment there
can be associated a definite angle (namely the angle of parallelism for this
segment), and with every area there can be associated a definite angle
(namely the acute angle of an equivalent Saccheri quadrilateral with unit base).

PROBLEMS

1. Establish the identity sinh? x = cosh?x — 1.

2. Derive relations (b) and (c) of Theorem 8.6.5.

3. Establish, through the Poincaré model, Theorems 7.2.7, 7.2.8, and 7.2.9.
4

. Show, by means of the Poincaré model, that as distance p increases from
0 to o, the corresponding angle of parallelism decreases from =/2 to 0.

5. Show, by means of the Poincaré model, that the fourth angle of a Lambert
quadrilateral is acute.
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6. Show that: (a) sinh x + cosh x = €%,
(b) tanh x = (€2* — 1)/(e** + 1).

7. (a) If x = sinhy,show thaty = log[x + (x? + 1)!/2].

(b) If x = tanh y, show that y = (1/2) log [(1 + x)/(1 — x)].
8. Establish the following identities:

(a) sinh(x + y) = sinh c cosh y + cosh x sinh y

(b) cosh(x + y) = cosh x coshy + sinh x sinh y

(c) tanh(x + y) = (tanhx + tanhy)/(1 + tanh x tanh y)
9. Establish the following identities:

(a) sinh 2x = 2 sinh x cosh x

(b) cosh 2x = sinh? x + cosh?x

(c) tanh2x = 2tanhx/(1 + tanh?x)

10. Establish the following identities (where ¥ = (x + »)/2 and v = (x — »)/2):
(a) sinh x + sinh y = 2 sinh u cosh v
(b) sinh x — sinh y = 2 cosh « sinh v
(¢) cosh x + cosh y = 2 cosh u cosh v
(d) cosh x — cosh y = 2 sinh u sinh v

11. Show that:

(a) sinh(—x) = —sinhx
(b) cosh(—x) = coshx
(c) tanh(—x) = —tanh x

12. Express tanh x in terms of: (a) sinh x, (b) cosh x.

13. Derive the following formulas for the Lobachevskian right triangle ABC
(right-angled at C) from the two formulas (1) cosh ¢ = cosh a cosh b, (2)
cos A = tanh b/tanh a.

(a) sin A = sinh a/sinh ¢, sin B = sinh b/sinh ¢
(b) cot 4 cot B = cosh ¢

(c) tan A = tanh afsinh b, tan B = tanh b/sinh a
(d) cosh a = cos A/sin B, cosh b = cos B/sin A

14. For the general Lobachevskian triangle 4BC show that:
(a) sinh a: sinh b: sinh ¢ = sin A4: sin B: sin C
(b) cosh a = cosh b cosh ¢ — sinh b sinh ¢ cos 4

15. Show that if we had chosen length AB = k log (AB,TS), where k is a positive
constant (thus changing the unit of length), then:

(a) the formulas of Problems 13 and 14 above would have to be modified by
everywhere replacing a, b, ¢ by a/k, b/k, c/k.

(b) tan «/2 = e~ P* where o is the angle of parallelism corresponding to
distance p.

(c) lim tan /2 = 1, and Lobachevskian geometry becomes sensibly Euclidean
k>

if k is chosen very large in comparison with the lengths of the segments involved.

8.7 A POSTULATIONAL FOUNDATION FOR PLANE
PROJECTIVE GEOMETRY

In Chapter 6 we considered projective geometry essentially as it historically
developed. That is, we noted a certain core of theorems lying within the
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expanding body of theorems of Euclidean geometry and possessing a com-
mon character that we called descriptive. There are certain unsatisfactory
features of such an approach to projective geometry. In the first place, if
the postulational basis of Euclidean geometry is somewhat vague or incom-
plete (as is usually the case with a high school treatment of the subject),
then this vagueness or incompleteness is also reflected in the projective
geometry. And even if the postulational basis for Euclidean geometry should
be made precise, the theorems of projective geometry are of such a special
type that this basis, at least in its entirety, fails to distinguish the projective
theorems from the nonprojective ones. Perhaps the most satisfying way out
of the difficulty is to reconstruct projective geometry as an independent
discipline, with its own primitive terms and postulational basis.

There are many postulate sets for plane projective geometry that we could
give, but the following* will most neatly serve the purposes of the present
section. Here “point,” “line,” and “on” are primitive terms.

8.7.1 POSTULATES FOR PLANE PROJECTIVE GEOMETRY

I. There is one and only one line on every two distinct points, and one and
only one point on every two distinct lines.

II. There exist two points and two lines such that each of the points is on
Jjust one of the lines and each of the lines is on just one of the points.

III. There exist two points and two lines, the points not on the lines, such
that the point on the two lines is on the line on the two points.

Now it will be recalled (from Section 6.7) that from a given proposition
concerning only the primitive terms point, line, and on, we can form a
second proposition, called the dual of the first, by simply everywhere inter-
changing the words point and line. The principle of duality of plane pro-
jective geometry asserts that: The dual of a true proposition of plane projective
geometry is another true proposition of plane projective geometry. The proof
of this principle that was given in Section 6.7 was based on Poncelet’s theory
of poles and polars, and a feeling of dissatisfaction with this proof was
expressed at the time. We are now in a position to give a simple and com-
pletely satisfying proof of the principle of duality of plane projective geom-
etry. All we have to do is to show that the postulates for plane projective
geometry imply the dual of each postulate, for then the dual of any theorem
that has been derived from the postulate set can be established by simply
dualizing, one by one, the statements of the proof of the original theorem.
The fact that each of the postulates we have selected is actually self-dual
saves us the task of deriving as theorems the system of dual statements,
and therefore immediately vouchsafes us the principle of duality for plane
projective geometry. We might now restate the principle of duality as
follows:

* K. Menger, “Self-dual postulates in projective geometry,” The American Mathematical
Monthly, 55 (1948), 195.
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8.7.2 THE PRINCIPLE OF DUALITY FOR PLANE PROJECTIVE GEOMETRY. If a
theorem is deducible from the postulates of plane projective geometry, then
its dual is also deducible from these postulates.

It is an interesting and significant fact that the postulates for plane pro-
jective geometry given above do not require that the number of points in
our geometry be infinite. In fact, consider the situation where there are
seven ‘‘points,” namely the seven letters A, B, C, D, E, F, G, and seven
““lines,” namely the seven letter trios (4FB), (BDC), (CEA), (AGD), (BGE),
(CGF), (DEF). Postulate 1 is easily verified by considering separately each
of the 21 pairs of “ points”’ and each of the 21 pairs of ““lines.” Postulate II
is verified by the two “points” B, C and the two “lines” (AFB), (AEC).
Postulate III is verified by the two “points” B, C and the two ‘lines”
(AGD), (DEF).

A projective geometry containing only a finite number of distinct points
is called a finite projective geometry. The above model establishes the exist-
ence of a finite projective geometry. It also establishes the absolute consist-
ency of our postulate set for plane projective geometry. And, finally, it
shows that if we wish our plane projective geometry to resemble more
closely the earlier historical concept of the subject we shall have to introduce
further postulates. In fact, by gradually adding appropriate further postulates
and introducing certain modifications, it is possible to convert the postulate
set for plane projective geometry into a postulate set for plane Euclidean
geometry, passing through postulate sets for various intermediate geometries
on the way. Such a passage from projective geometry to Euclidean geometry
is an interesting but lengthy procedure which we must forgo. We shall,
however, say a few words in the next section about the enlargement of our
postulate set for plane projective geometry so as to make the resulting
geometry resemble the classical plane projective geometry considered in
Chapter 6.

PROBLEMS

1. Show that the postulate set 8.7.1 and the following postulate set are equivalent
(that is, each implies the other).

Pl. There exists at least one line.

P2. There are at least three points on every line.

P3. Not all points are on the same line.

P4. There is exactly one line on any two distinct points.
P5. There is at least one point on any two distinct lines.

2. (a) Derive the following theorems from the postulate set of Problem 1 above.

T1. There exists at least one point.

T2. There is exactly one point on any two distinct lines.
T3. There are at least three lines on every point.

T4. Not all lines are on the same point.

8.7 A Postulational Foundation for Plane Projective Geometry
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(b) Now show that the principle of duality holds in the geometry following
from the postulates of Problem 1 above.
3. Deduce the following additional theorems from the postulate set of Problem 1

above.

TS. If there are at least n points on one line, then there are at least n points
on any other line.

T6. If there are at most n points on one line, then there are at most n points
on any other line.

T7. If there are exactly n points on one line, then there are exactly n points

on every line.
T8. If there are exactly m lines on one point, then there are exactly m lines on

every point.
T9. If there are exactly n points on each line, then there are exactly n lines

on each point.
T10. If there are exactly n points on each line, then there aren? — n + 1 points
altogether andn? — n + 1 lines altogether.

4. Prove that a plane projective geometry must contain at least 7 distinct points
and 7 distinct lines.

5. Construct a plane projective geometry with exactly four distinct points on each
line.

6. Show that the following is a Euclidean interpretation of the postulates for plane
projective geometry. Let O be a fixed point in space; by a “point” we shall
mean a line through O; by a “line” we shall mean a plane through O; by “on”
we shall mean the obvious interpretation.

7. Establish the independence of the postulates of the postulate set of Problem 1
above.

8. Show that postulates, P1, P2, P3 of the postulate set of Problem 1 above can

be replaced by the single postulate:
P1’. There exist four points, no three of which are collinear.

8.8 NON-DESARGUESIAN GEOMETRY

Desargues’ two-triangle theorem for the plane (that copolar triangles in a
plane are coaxial, and conversely) is a statement about the incidence of
some points and lines of the plane. It might seem, then, that Desargues’
two-triangle theorem for the plane should be deducible from the above
postulates for plane projective geometry, for these postulates describe the
incident relation of point and line in the plane. We shall now show, however,
that Desargues’ two-triangle theorem for the plane is not implied by the
postulates of plane projective geometry. To accomplish this we construct
a model in which the postulates for plane projective geometry are verified
but in which Desargues’ two-triangle theorem does not hold.

Choose an ordinary line 4 of an extended Euclidean plane as an x axis
of a rectangular Cartesian coordinate system (see Figure 8.8a). By points
in the model we shall mean the ordinary and ideal points of the extended
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Figure 8.8a

Euclidean plane. By /ines in the model we shall mean the ideal line at infinity,
all ordinary lines of zero, infinite, or negative slope (like lines a, b, and ¢),
plus all broken lines consisting of two half-lines of positive slope meeting
on h and with the slope of the upper half-line twice that of the lower half-
line (like broken line AXB). By on in the model we shall mean the obvious
interpretation.

One may now verify the three postulates of plane projective geometry in
our model. Postulates II and III are easily verified. The only part of the
verification of Postulate I that requires comment is the verification that two
points 4 and B of the model, where A4 is in the lower half of the plane and
B is in the upper half with B to the right of A4, determine a unique line of
the model. In Figure 8.8a, let X, and X, be the feet of the perpendiculars
from 4 and B on line A. As point X moves along line 4 from X, to X,
the value of (slope XB)/(slope AX) increases continuously from 0 to co. It
follows that there is a unique point X between X, and X, such that (slope
XB)/(slope AX) = 2. If X is not between X, and X, then clearly the broken
line AXB is not a line in the model. Thus there is one and only one line in
the model joining the points 4 and B.

Now consider the two copolar triangles ABC, A’B’C’ of Figure 8.8b.
Let AA’, BB’, CC’ concur in O, and let BC and B’C’ intersect in L, CA and

h

Figure 8.8b
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C’A’ intersect in M, AB and A’B’ intersect in N. Then, since Desargues’
two-triangle theorem holds in the Euclidean plane, L, M, N are collinear.
But we have drawn the figures so that all the lettered points except N lie
below A, and so lines LM and 4B have negative slope while line A’B’ has
positive slope. It follows that, in the model, the two triangles are still co-
polar at O, but the line determined by A’ and B’ no longer passes through
N, and the two triangles are not coaxial in the model.

8.8.3 THEOREM. Desargues’ two-triangle theorem is independent of the
postulates for plane projective geometry.

The model we have just described is a projective geometry in which
Desargues’ Theorem does not hold. Such a geometry is called a non-
Desarguesian geometry, and this particular example of a non-Desarguesian
geometry was given by F. R. Moulton in 1902, and is perhaps the simplest
example of a non-Desarguesian geometry yet devised. A more complex
example of a non-Desarguesian geometry had been given by Hilbert in his
Grundlagen der Geometrie, where it is shown that the plane case of Desargues’
Theorem cannot be deduced without using all the congruence postulates
or the assumption that the plane is embedded in a three-dimensional space—
a curious situation inasmuch as the plane case of Desargues’ Theorem would
seem to be independent of both metrical notions and any higher dimensional
space. If the reader will recall the various proofs that we have given of the
plane case of Desargues’ Theorem, he will be able to note that these proofs
use either metrical notions or the fact that the plane lies within three-
dimensional space.

Let us, for convenience, denote the following three (planar) propositions
by D, P, and F; it will be noted that Proposition D is part of the plane case
of Desargues’ Theorem and that Proposition P is Pappus’ Theorem—
Proposition F is usually called the Fundamental Theorem of Classical Pro-
Jective Geometry.

8.8.4 ProrosiTioN D. If ABC, A’B’C’ are two triangles in which the six
sides and six vertices are distinct, and if AA’, BB’, CC’ concur, then the three
points of intersection of BC and B'C’, CA and C'A’, AB and A'B’ are collinear.

8.8.6 ProrosiTION P. If A, B, C and A’, B, C’ are two sets of collinear
points on distinct lines, then the three points of intersection of BC' and B'C,

CA’ and C’'A, AB’ and A'B are collinear.

8.8.6 ProrosiTioN F. If a projectivity carries each of three collinear
points into itself, then it carries every point of their line into itself.

It can be shown that in the presence of our three postulates I, II, III for
plane projective geometry: (1) Proposition F implies Proposition P, (2)
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Propositions P and D imply Proposition F, (3) Proposition D implies the
converse of Proposition D, (4) Proposition P implies Proposition D. It
follows that Propositions P and F are equivalent and that Proposition P
implies Propositions D and F and the converse of Proposition D. In fact,
if in addition to our three postulates I, II, IIT we assume only Proposition P,
then the whole of classical plane projective geometry can be deduced.

To state this otherwise, we formulate the following definitions.

8.8.7 DEFINITIONS. A projective plane is the composite notion of two
nonempty sets of objects called points and lines, along with a relation on
between points and lines, for which our three postulates I, II, III hold.
According as Proposition D, P, or F also holds, the projective plane is said
to be Desarguesian, Pappian, or classical.

We then have the following theorem.

8.8.8 THEOREM. A Pappian projective plane is Desarguesian and classical.

We do not take the space to consider here the important parts played
by Propositions D and P in the setting up of a coordinate system in a
projective plane.

PROBLEMS

1. Show that the principle of duality holds in a Desarguesian projective plane.

2. Actually verify Postulates I, II, IIl of Section 8.7 in the model set up in
Section 8.8 of a non-Desarguesian plane projective geometry.

3. (a) Show that the nonvertical modified lines through the point (a,0) in the
model of the non-Desarguesian plane projective geometry of Section 8.7 may be
defined analytically by the equation

y = m(x — a)f(y,m),

where (i) f(ym) =1 if m = 0, (ii) f(y,m) =1 if m > 0 and y =< 0, (iii) f(y,m)
=2ifm>0andy > 0.

(b) Let P(r,s), Q(t,u) be two points of the Cartesian plane such that r < ¢,
s < 0, u > 0. Show that the unique modified line determined by P and Q cuts
the x axis in the point where x = (ur — 2st)/(u — 2s).

4. If in a trigonometric equation each trigonometric function which appears is
replaced by its cofunction, the new equation obtained is called the dual of the
original equation. Establish the following principle of duality of trigonometry:
If a trigonometric equation involving a single angle is an identity, then its dual is
also an identity.

8.9 FINITE GEOMETRIES

A finite geometry is a geometry containing only a finite number of points,
lines, and planes. The existence of such a geometry containing exactly 7
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points, 7 lines, and 1 plane was established in Section 8.7. It was G. Fano
who, in 1892, first considered a finite geometry—a three-dimensional geom-
etry containing 15 points, 35 lines, and 15 planes, each plane containing
7 points and 7 lines. But finite geometries were not brought into prominence
until about 1906, when Oswald Veblen and W. H. Bussey made a study of
finite projective geometries. Since then the study of finite geometries has
grown considerably and has given rise to many unsolved problems that are
engaging the attention of current researchers. For example, it has been
shown that there exist finite projective geometries having n points on a line
if n — 1 is a power of a prime, but it is not known if n can have any other
value. It has been shown that there is essentially only one finite projective
geometry with » points on a line if n =3, 4, 5, or 6, no such geometry for
n =7, exactly one for n = 8, at least one for n =9, and at least four for
n = 10 (one of which is Desarguesian and the other three non-Desarguesian).
A systematic study of finite geometries requires a long excursion into
abstract algebra, and is thus beyond the limits imposed on this book. The
existence of finite geometries furnishes additional support of the hypothetico-
deductive nature of much of present-day geometric study. In this section
we shall very briefly consider a few special plane finite geometries.

8.9.1 Fano’s seven-point projective geometry. Postulates for the 7 point
finite geometry of Section 8.7 may be stated as follows:

P1. There exists at least one line.

P2. There are exactly three points on every line.

P3. Not all points are on the same line.

P4. There is exactly one line on any two distinct points.

P5. There is at least one point on any two distinct lines.

The finite geometry is a projective geometry (see Problem 1, Section 8.7)
and can be represented by the following symbolic diagram, where the
numbers 1, . . ., 7 represent points and the vertical columns represent lines:

8.9.2 A finite projective geometry of thirteen points and thirteen lines. As
a postulational basis for this geometry we may take the postulates of 8.9.1
with Postulate P2 replaced by:

P2’. There are exactly four points on every line.
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This geometry can be represented by the following symbolic diagram:

1 2 3 4 5 6 7 8 9 10 11 12 13
2 3 4 5 6 7 8 9 10 11 12 13 1
4 5 6 7 8 9 10 11 12 13 1 2 3
10 11 12 13 1 2 3 4 5 6 7 8 9

8.9.3 Young's finite geometry of nine points and twelve lines. If in the
finite projective geometry of 8.9.2 we omit one of the lines of four points,
we obtain a geometry of 9 points and 12 lines. This is equivalent to projecting
one of the lines to infinity and thereby converting the projective geometry
of 13 points and 13 lines without parallel lines into a Euclidean geometry
of 9 points and 12 lines with parallel lines.* This geometry can be defined
by the following postulates:

P1. There exists at least one line.

P2. There are exactly three points on every line.

P3. Not all points are on the same line.

P4. There is exactly one line on any two distinct points.

P5. Given a line 1 and a point P not on 1, there is exactly one line on
P and not on any point on 1.

Two lines not containing a point in common are said to be parallel, and
this finite geometry is Euclidean in the sense that through any point not
on a line there is one and only one line parallel to that line. The principle
of duality does not hold in this geometry inasmuch as any two distinct
points determine a line but two distinct lines do not always determine a
point. The reader might care to try to deduce the following theorems of this
geometry from the above postulational basis.

T1. There exist exactly nine points in the geometry.

T2. There exist exactly twelve lines in the geometry.

T3. Every line has precisely two lines parallel to it.

T4. Two lines parallel to a third line are parallel to each other.

TS. Pappus’ Theorem holds for the six points on any pair of parallel lines.

The geometry can be represented by the following symbolic diagram:

1 2 2 2 3 3 3 4 7
2 4 5 6 5 4 6 4 5 6 5 8
3 7 9 8 8 9 7 8 7 9 6 9

—
[
[

8.9.4 The Pappus finite geometry. This finite geometry of 9 points and
* This geometry is used to illustrate a complete logical system in M. R. Cohen and

E. Nagel, Introduction to Logic and Scientific Method. New York: Harcourt, Brace and
Company, Inc., 1934.
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9 lines with 3 points on each line and 3 lines on each point can be defined
by the following postulates:

P1. There exists at least one line.

P2. There are exactly three points on every line.

P3. Not all points are on the same line.

P4. There is at most one line on any two distinct points.

P5. Given a line 1 and a point P not on l, there is exactly one line on P and
not on any point on 1.

P6. Given a point P and a line 1 not on P, there is exactly one point on 1
and not on any line on P.

Two lines without a point in common are said to be parallel lines, and
two points without a line in common are said to be parallel points. The
principle of duality holds in this geometry, which has the Euclidean property
of parallelism of lines and also the dual property of parallelism of points.
The following theorems can be established.

T1. There exists at least one point.

T2. Not all lines pass through the same point.

T3. There is at most one point on any two distinct lines.

T4. There are exactly three lines on every point.

TS5. The principle of duality holds.

T6. Pappus’ Theorem holds for the six points on any pair of parallel lines.

T7. There are exactly nine points in the geometry.

T8. There are exactly nine lines in the geometry.

The geometry can be represented by the following symbolic diagram or
by the graphical diagram of Figure 8.9a.

1 2 3 4 5 6 1 2 7
2 3 4 5 6 4
7 8 9 7 8 9 5 6 9

Figure 8.9a

8.9.5 The Desargues finite geometry. This is a finite geometry of 10
points and 10 lines with 3 points on a line and 3 lines on a point. It can
be defined by the following postulates:

Pl. There exists at least one point.
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DEerINITIONS. A line p is called a polar of a point P if there is no line
on both P and a point on p. A point P is called a pole of a line p if there
is no point on both p and a line on P.

P2. Every point has a polar.

P3. Every line has at most one pole.

P4. There is at most one line on any two distinct points.

P5. There are at least three distinct points on every line.

P6. If line p is not on point Q, then there is a point on both p and any polar
qof Q.

Two lines without a point in common are said to be parallel lines; two
points without a line in common are said to be parallel points. This
geometry is interesting in that it is Desarguesian, has duality, has polarity,
and is Lobachevskian in the sense that a line may have as many as three
lines parallel to it through a given point not on it. The reader may care to
try to establish the following theorems.

T1. A point has exactly one polar and a line has exactly one pole.

T2. If point P is the pole of line p, then line p is the polar of point P.

T3. If point P is on the polar of point Q, then point Q is on the polar of

point P.
T4. Two lines parallel to the same line have a point in common.
T5. There are exactly three points on every line and three lines on every point.
T6. There are exactly ten points and ten lines in the geometry.
T7. The principle of duality holds.
T8. Desargues’ Theorem holds.

The geometry may be represented by the following symbolic diagram or
by the graphical diagram of Figure 8.9b.

1 2 3 2 4 3 6 1 4 17
4 5 6 3 6 1 4 2
10 10 10 7 7 8 8 9

10

)‘\'7

2
Figure 8.9b M
V|
5

4
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8.9.6 Affine geometries. An affine geometry can be defined by the follow-
ing postulates:

P1. There exists at least one line.

P2. There are at least two points on every line.

P3. Not all points are on the same line.

P4. There is exactly one line on any two distinct points.

P5. Given a line 1 and a point P not on 1, there is exactly one line on P and
not on any point on 1. (This may be called the parallel postulate.)

The following theorems can be established from the above postulates.

T1. Every line contains either an infinite number of points or the same
finite number.

T2. Every point has either an infinite number of lines on it, or the same
finite number.

T3. If every line contains exactly n points, then every point has exactly
n + 1 lines on it.

T4. If every line contains exactly n points, then there are exactly n* points
and n(n + 1) lines in the geometry.

DEFINITION 1. Two lines having no point in common are said to be
parallel.

TS. If a line is parallel to one of two intersecting lines, it intersects the
other.

T6. If line p is parallel to line q and line q is parallel to line r, then line
p is parallel to line r.

DEerINITION 2. If p is any line, then the set of lines consisting of p and
all lines parallel to p is called the parallel class of p, and is denoted by [p].

T7. If line q is in [pl, then [q] = [p].
T8. Two parallel classes either coincide or have no members in common.

T9. If every line contains exactly n points, then for each line p class [p]
has exactly n members.

T10. If a common ideal point is assigned to all the lines of a parallel class,
and if the set of all such ideal points is called an ideal line, then the augmented
plane containing all ordinary and ideal points and lines is a projective plane.

8.9.7 An interesting finite affine geometry. Young’s geometry of 8.9.3 is
clearly a finite affine geometry. As another example of a finite affine ge-
ometry consider the following model.

The 25 letters 4, B, C,..., Y (all the letters of the English alphabet
except Z) shall be called points. The 30 sets of five letters which occur
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together in any row or any column of the following three blocks shall be
called lines.

A BCDE Al LT W AXOQO0OH
F GHI J S VEHK RKIBY
K L MNO GORUD J CUSL
P OQRST YCFNOQ VT MF D
UV WXY MP X B J NGE WP

The notion of a point on a line and a line on a point will have the obvious
interpretation.

We leave to the reader the straightforward task of showing that the
model is indeed an example of a finite affine geometry, and now formulate
the following definitions.

DEFINITION 1. By the distance Z,Z, between two points Z, and Z, on
a line p is meant the least number of steps along the line p from one point
to the other, where the first letter of the line is considered as following the
last letter of the line. (Thus on line ABCDE, distance DB = 2 and distance
AE=1))

DEFINITION 2. Two point pairs Z,, Z, and Z;, Z, are congruent, and we
write Z,Z, = Z,Z,, if they both lie on row lines or both lie on column
lines and if distance Z,Z, = distance Z; Z, . (Thus AC = RD and DS = KG.)

DEFINITION 3. A line g is perpendicular to a line p if there exist two points
Z, and Z, on p such that for each point Z on q, ZZ, = ZZ, . (Thus line
AFKPU is perpendicular to line ABCDE, since we may take Z, = B,Z, = E.)

A surprising number of theorems of Euclidean plane geometry can be
shown to hold in this finite geometry. For example we have:

T1. Through any given point there is a unique perpendicular to a given line.
T2. The three altitudes of a triangle are concurrent in a point a.

T3. The perpendicular bisectors of the three sides of a triangle are con-
current in a point p.

T4. The three medians of a triangle are concurrent in a point 7y.

TS. The three points a, B, y of T2, T3, T4 are collinear and such that vy
divides the segment aff in the ratio 2:1.

An extensive theory of parallelograms and quadrilaterals can be developed.
There are counterparts of such loci as circles, parabolas, ellipses, and hyper-
bolas. As an example, the theorem The locus of the midpoints of a system
of parallel chords of a parabola is a line perpendicular to the directrix of the
parabola, continues to hold. A theory of areas can be formulated.

8.9 Finite Geometries
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PROBLEMS

1. Consider the following postulates:
Pl. There is exactly one point on any two distinct lines.
P2. Every point is on exactly one pair of lines.
P3. There are exactly four lines.
(a) Establish the absolute consistency of the above postulate set.
(b) Establish the independence of the above postulate set.
(c) Deduce the following theorems from the above postulate set:
T1. There are exactly six points.
T2. There are exactly three points on each line.
DEerFINITION. Two points which have no line in common are called parallel
points.
T3. Each point has exactly one point parallel to it.
T4. On a line not containing a given point there is one and only one point
which is parallel to the given point.

2. (a) Show that the postulate set of 8.9.3 is independent.
(b) Try to establish the theorems of 8.9.3.

3. (a) Show that the postulate set of 8.9.4 is independent.
(b) Try to establish the theorems of 8.9.4.

4. (a) Show that the postulates of 8.9.5 are independent.
(b) Try to establish the theorems of 8.9.5.

5. (a) Show that the postulates of 8.9.6 are independent.
(b) Try to establish the theorems of 8.9.6.

6. (a) Give an example in the model of 8.9.7 of theorems T1 through T5.

(b) Is line ABCDE perpendicular to line AFKPU?
(c) Prove that every segment has a midpoint.
(d) Find the points on the circle with center 4 and passing through point B.
(e) Find the points on the circle with center A and passing through point C.
(f) Show that triangle ABJ is isosceles, with vertex B, and that the altitude from
B bisects the base AJ.
(g) Check, by examples in this model, the following theorems:

(1) If one pair of sides of a quadrilateral are congruent and parallel, so are
the other pair of sides.

(2) The diagonals of a parallelogram bisect each other.

(3) The diagonals of a rhombus are perpendicular.

(4) There is a unique tangent to a circle at each point of the circle.
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Appendix

1

Euclid’s First Principles and
the Statement of
the Propositions of Book I’

The Initial Explanations and Definitions

1. A point is that which has no part.
. A line is length without breadth.
. The extremities of a line are points.
. A straight line is a line which lies evenly with the points on itself.
. A surface is that which has only length and breadth.
. The extremities of a surface are lines.
. A plane surface is a surface which lies evenly with the straight lines on
itself.
8. A plane angle is the inclination to one another of two lines in a plane
if the lines meet and do not lie in a straight line.
9. When the lines containing the angle are straight lines, the angle is
called a rectilinear angle.

10. When a straight line erected on a straight line makes the adjacent
angles equal to one another, each of the equal angles is called a right angle,
and the straight line standing on the other is called a perpendicular to that
on which it stands.

NAWVLA W

* Taken, with permission, from T. L. Heath, The Thirteen Books of Euclid’s Elements,
3 vols., 2 ed. New York: The Cambridge University Press, 1926. Reprint, New York:
Dover Publications, Inc., 1956.
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11. An obtuse angle is an angle greater than a right angle.

12. An acute angle is an angle less than a right angle.

13. A boundary is that which is an extremity of anything.

14. A figure is that which is contained by any boundary or boundaries.

15. A circle is a plane figure contained by one line such that all the
straight lines falling upon it from one particular point among those lying
within the figure are equal.

16. The particular point (of Definition 15) is called the center of the
circle.

17. A diameter of a circle is any straight line drawn through the center
and terminated in both directions by the circumference of the circle. Such
a straight line also bisects the circle.

18. A semicircle is the figure contained by a diameter and the circum-
ference cut off by it. The center of the semicircle is the same as that of the
circle.

19. Rectilinear figures are those which are contained by straight lines,
trilateral figures being those contained by three, quadrilateral those con-
tained by four, and multilateral those contained by more than four straight
lines.

20. Of the trilateral figures, an equilateral triangle is one which has its
three sides equal, an isosceles triangle has two of its sides equal, and a scalene
triangle has its three sides unequal.

21. Furthermore, of the trilateral figures, a right-angled triangle is one
which has a right angle, an obtuse-angled triangle has an obtuse angle, and
an acute-angled triangle has its three angles acute.

22. Of the quadrilateral figures, a square is one which is both equilateral
and right-angled; an oblong is right-angled but not equilateral; a rhombus
is equilateral but not right-angled; and a rhomboid has its opposite sides
and angles equal to one another but is neither equilateral nor right-angled.
Quadrilaterals other than these are called trapezia.

23. Parallel straight lines are straight lines which, being in the same plane
and being produced indefinitely in both directions, do not meet one another
in either direction.

The Postulates

Let the following be postulated:

1. A straight line can be drawn from any point to any point.

2. A finite straight line can be produced continuously in a straight line.

3. A circle may be described with any center and distance.

4. All right angles are equal to one another.

5. If a straight line falling on two straight lines makes the interior angles
on the same side together less than two right angles, the two straight lines,
if produced indefinitely, meet on that side on which the angles are together
less than two right angles.

Appendix 1



The Axioms or Common Notions

1. Things which are equal to the same thing are also equal to one another.
2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

The Forty-Eight Propositions of Book |

1. On a given finite straight line to construct an equilateral triangle.

2. To place at a given point (as an extremity) a straight line equal to a
given straight line.

3. Given two unequal straight lines, to cut off from the greater a straight
line equal to the less.

4. If two triangles have the two sides equal to two sides respectively, and
have the angles contained by the equal straight lines equal, they will also
have the base equal to the base, the triangle will be equal to the triangle,
and the remaining angles will be equal to the remaining angles respectively,
namely those which the equal sides subtend.

5. In isosceles triangles the angles at the base are equal to one another,
and, if the equal straight lines be produced further, the angles under the
base will be equal to one another.

6. If in a triangle two angles be equal to one another, the sides which
subtend the equal angles will also be equal to one another.

7. Given two straight lines constructed on a straight line (from its extrem-
ities) and meeting in a point, there cannot be constructed on the same
straight line (from its extremities), and on the same side of it, two other
straight lines meeting in another point and equal to the former respectively,
namely each to that which has the same extremity with it.

8. If two triangles have the two sides equal to two sides respectively, and
have also the base equal to the base, they will also have the angles equal
which are contained by the equal straight lines.

9. To bisect a given rectilinear angle.

10. To bisect a given finite straight line.

11. To draw a straight line at right angles to a given straight line from
a given point on it.

12. To a given infinite straight line, from a given point which is not on
it, to draw a perpendicular straight line.

13. If a straight line set up on a straight line make angles, it will make
either two right angles or angles equal to two right angles.

14. If with any straight line, and at a point on it, two straight lines not
lying on the same side make the adjacent angles equal to two right angles,
the two straight lines will be in a straight line with one another.

15. If two straight lines cut one another, they make the vertical angles
equal to one another.

Euclid’s First Principles and the Statement of the Propositions of Book 1
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16. In any triangle, if one of the sides be produced, the exterior angle is
greater than either of the interior and opposite angles.

17. In any triangle two angles taken together in any manner are less than
two right angles.

18. In any triangle the greater side subtends the greater angle.

19. 'In any triangle the greater angle is subtended by the greater side.

20. In any triangle two sides taken together in any manner are greater
than the remaining one.

21. If on one of the sides of a triangle, from its extremities, there be
constructed two straight lines meeting within the triangle, the straight lines
so constructed will be less than the remaining two sides of the triangle,
but will contain a greater angle.

22. Out of three straight lines, which are equal to three given straight
lines, to construct a triangle; thus it is necessary that two of the straight lines
taken together in any manner should be greater than the remaining one.

23. On a given straight line and at a point on it to construct a rectilinear
angle equal to a given rectilinear angle.

24. If two triangles have the two sides equal to two sides respectively,
but have the one of the angles contained by the equal straight lines greater
than the other, they will also have the base greater than the base.

25. If two triangles have the two sides equal to two sides respectively,
but have the base greater than the base, they will also have the one of the
angles contained by the equal straight lines greater than the other.

26. If two triangles have the two angles equal to two angles respectively,
and one side equal to one side, namely, either the side adjoining the equal
angles, or that subtending one of the equal angles, they will also have the
remaining sides equal to the remaining sides and the remaining angle equal
to the remaining angle.

27. If a straight line falling on two straight lines make the alternate angles
equal to one another, the straight lines will be parallel to one another.

28. If a straight line falling on two straight lines make the exterior angle
equal to the interior and opposite angle on the same side, or the interior
angles on the same side equal to two right angles, the straight lines will be
parallel to one another.

* * * * * *

29. A straight line falling on parallel straight lines makes the alternate
angles equal to one another, the exterior angle equal to the interior and
opposite angle, and the interior angles on the same side equal to two right
angles.

30. Straight lines parallel to the same straight line are also parallel to
one another.

31. Through a given point to draw a straight line parallel to a given
straight line.
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32. In any triangle, if one of the sides be produced, the exterior angle is
equal to the two interior and opposite angles, and the three interior angles
of the triangle are equal to two right angles.

33. The straight lines joining equal and parallel straight lines (at the
extremities which are) in the same directions (respectively) are themselves
also equal and parallel.

34. In parallelogrammic areas the opposite sides and angles are equal
to one another, and the diameter bisects the areas.

35. Parallelograms which are on the same base and in the same parallels
are equal to one another.

36. Parallelograms which are on equal bases and in the same parallels
are equal to one another.

37. Triangles which are on the same base and in the same parallels are
equal to one another.

38. Triangles which are on equal bases and in the same parallels are
equal to one another.

39. Equal triangles which are on the same base and on the same side
are also in the same parallels.

40. Equal triangles which are on equal bases and on the same side are
also in the same parallels.

41. If a parallelogram have the same base with a triangle and be in the
same parallels, the parallelogram is double of the triangle.

42. To construct, in a given rectilinear angle, a parallelogram equal to
a given triangle.

43. In any parallelogram the complements of the parallelograms about the
diameter are equal to one another.

44. To a given straight line to apply, in a given rectilinear angle, a
parallelogram equal to a given triangle.

45. To construct, in a given rectilinear angle, a parallelogram equal to
a given rectilinear figure.

46. On a given straight line to describe a square.

47. In right-angled triangles the square on the side subtending the right
angle is equal to the squares on the sides containing the right angle.

48. If in a triangle the square on one of the sides be equal to the squares
on the remaining two sides of the triangle, the angle contained by the
remaining two sides of the triangle is right.

Euclid’s First Principles and the Statement of the Propositions of Book 1
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Appendix

2

Hilbert's Postulates for
Plane Euclidean Geometry

PRIMITIVE TERMS

point, line, on, between, congruent

Group | : Postulates of Connection

I-1. There is one and only one line passing through any two given distinct
points.

I-2. Every line contains at least two distinct points, and for any given line
there is at least one point not on the line.

Group |l : Postulates of Order

II-1. If point C is between points A and B, then A, B, C are all on the
same line, and C is between B and A, and B is not between C and A, and A
is not between C and B.

I1-2. For any two distinct points A and B there is always a point C which
is between A and B, and a point D which is such that B is between A and D.

1I-3. If A, B, C are any three distinct points on the same line, then one
of the points is between the other two.

DEFINITIONS. By the segment AB is meant the points 4 and B and all
points which are between A4 and B. Points 4 and B are called the end points



of the segment. A point C is said to be on the segment 4B if it is 4 or B
or some point between 4 and B.

DErFINITION. Two lines, a line and a segment, or two segments, are said
to intersect if there is a point which is on both of them.

DEeFINITIONS. Let 4, B, C be three points not on the same line. Then by
the triangle ABC is meant the three segments 4B, BC, CA. The segments
AB, BC, CA are called the sides of the triangle, and the points 4, B, C are
called the vertices of the triangle.

II-4. (Pasch’s Postulate) A line which intersects one side of a triangle
but does not pass through any of the vertices of the triangle must also intersect
another side of the triangle.

Group lll: Postulates of Congruence

III-1. If A and B are distinct points and if A’ is a point on a line m, then
there are two and only two distinct points B’ and B" on m such that the pair
of points A’, B’ is congruent to the pair A, B and the pair of points A’, B" is
congruent to the pair A, B; moreover, A’ is between B’ and B’.

III-2. If two pairs of points are congruent to the same pair of points, then
they are congruent to each other.

III-3. If point C is between points A and B and point C’ is between points
A’ and B', and if the pair of points A, C is congruent to the pair A’, C', and
the pair of points C, B is congruent to the pair C', B', then the pair of points
A, B is congruent to the pair A’, B'".

DEFINITION. Two segments are said to be congruent if the end points of
the segments are congruent pairs of points.

DErFINITIONS. By the ray AB is meant the set of all points consisting of
those which are between 4 and B, the point B itself, and all points C such
that B is between 4 and C. The ray 4B is said to emanate from point A.

THEOREM. If B’ is any point on the ray AB, then the rays AB’ and AB are
identical.

DEFINITIONS. By an angle is meant a point (called the vertex of the angle)
and two rays (called the sides of the angle) emanating from the point. By
virtue of the above theorem, if the vertex of the angle is point 4 and if B
and C are any two points other than 4 on the two sides of the angle, we
may unambiguously speak of the angle BAC (or CAB).

DerINITIONS. If ABC is a triangle, then the three angles BAC, CBA, ACB
are called the angles of the triangle. Angle BAC is said to be included by
the sides AB and AC of the triangle.

I11-4. If BAC is an angle whose sides do not lie in the same line, and if
A’ and B’ are two distinct points, then there are two and only two distinct rays,
A'C’ and A'C", such that angle B'A’C’ is congruent to angle BAC and angle
B’'A’'C" is congruent to angle BAC; moreover, if D' is any point on the ray
A'C’ and D" is any point on the ray A’C", then the segment D'D" intersects
the line determined by A’ and B'.

Hilbert's Postulates for Plane Euclidean Geometry 381



ITI-5. Every angle is congruent to itself.

III-6. If two sides and the included angle of one triangle are congruent,
respectively, to two sides and the included angle of another triangle, then each
of the remaining angles of the first triangle is congruent to the corresponding
angle of the second triangle.

Group IV : Postulate of Parallels

IV-1. (Playfair’s Postulate) Through a given point A not on a given line
m there passes at most one line which does not intersect m.

Group V: Postulates of Continuity

V-1. (Postulate of Archimedes) If A, B, C, D are four distinct points,
then there is, on the ray AB, a finite set of distinct points, A, A,, ..., A,
such that (1) each of the pairs A, A,; Ay, Ay .. .; A,_1, A, is congruent
to the pair C, D, and (2) B is between A and A, .

V-2. (Postulate of Completeness) The points of a line constitute a system
of points such that no new points can be assigned to the line without causing
the line to violate at least one of the nine postulates 1-1, 1-2, II-1, 11-2, 11-3,
114, III-1, III-2, V-1.

Alternative Group V

DEerINITIONS. Consider a segment AB. Let us call one end point, say A,
the origin of the segment, and the other point, B, the extremity of the seg-
ment. Given two distinct points M and N of AB, we say that M precedes
N (or N follows M) if M coincides with the origin 4 or lies between 4 and
N. A segment 4B, considered in this way, is called an ordered segment.

V’~1. (Dedekind’s Postulate) If the points of an ordered segment of origin
A and extremity B are separated into two classes in such a way that

(1) each point of AB belongs to one and only one of the classes,

(2) the points A and B belong to different classes (which we shall respec-

tively call the first class and the second class),

(3) each point of the first class precedes each point of the second class,
then there exists a point C on AB such that every point of AB which precedes
C belongs to the first class and every point of AB which follows C belongs
to the second class.
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Suggestions for Solutions
of Selected Problems

Section 1.2

1.

Let the quadrilateral be ABCD, with AB =a, BC =b, CD =c¢, DA =d.
Show that 2K = ad sin A + bcsin C = ad + bc; similarly, 2K < ab + cd;
therefore 4K < ad + bc + ab + c¢d = (a + ¢)(b + d). This formula illustrates
the prevalent idea, in early empirical geometry, of averaging.

2. Take w = 3.

6. (b) Consider a frustum having B, B’, h, V for bottom base, top base, altitude,
and volume. Let a, a’ represent the altitudes of the complete and cut-off
pyramids. Then V = (aB — a’B’)/3 =[(h + a’)B — (a — h)B’)/3 = (hB + hB’
+ a’B — aB’)/3. But a/la’ = +/B/+/B’, whence a’v/B = a+/B’. Therefore a’B
— aB’ = aVBB' — a'VBB’ = hV BB, etc.

9. (a) Ifris the radius of the circle, @ half the central angle subtended by the chord,
and A4 the sought area, then r = (45 + c?)/8s, @ = sin~(c/2r), A = r?@
+ (s — r)/2.

(b) 12 ft.
Section 1.3

1.

Set up a vertical stick of length s near the pyramid. Let S;, P, and S,, P, be
the points marking the shadows of the top of the stick and the apex of the
pyramid at two different times of the day. Then, if x is the sought height of the
pyramid, x = s(P1P,)/(S,S:).

Suggestions for Solutions of Selected Problems
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2. () T, =n(n+ 1)/2, S, =n? P, =nBn- 1)2.

4. A convex polyhedral angle must contain at least three faces, and the sum of its
face angles must be less than 360°.

5. (a) Suppose that /2 = p/q, where p and g are relatively prime integers. Then
p? = 2¢* and it follows that p?, and hence p, is even. Set p = 2r. Then 2r? = g
and it follows that g2, and hence ¢, is even. This contradicts the hypothesis
that p and g are relatively prime.

(b) Suppose that the diagonal 4 and the side s of a square are commensurable.
Then d = pt, s = gt, where p and g are integers and ¢ is some segment. It
follows that v/2 = d/s = p/q, a rational number.

(c) Suppose that the line passes through the lattice point (g,p) and let m denote
the slope of the line. Then /2 = m = p/q, a rational number.

9. THEOREM 1. Let a be a member of S. By P1 there exists a club 4 to which a
belongs. By P3 there exists a club B conjugate to club A. Since B is nonempty,
it has at least one member b, and b # a. By P2 there exists a club C containing
a and b. By P3 there exists a club D conjugate to club C. Since D is nonempty,
it has a member ¢, and ¢ # a, ¢ # b. By P2 there exists a club E containing
a and c. Since ¢ belongs to E but not to C, clubs C and E are distinct. Thus a
belongs to two distinct clubs, C and E.

THEOREM 2. Let A be a club. Since 4 is nonempty, it has at least one member
a. Suppose a is the only member of 4. By T1, there exists a club B distinct
from club 4 and containing a as a member. Now B must contain a second
member b # a, for otherwise clubs 4 and B could not be distinct. By P3
there exists a club C such that B is conjugate to C. It then follows that A'is also
conjugate to C. But this contradicts P3. Hence the theorem by reductio ad
absurdum.

THEOREM 3. In the proof of T1 we showed the existence in .S of at least two
distinct people a and 4. By P2 there exists a club 4 to which a and b belong.
By P3 there exists a club B conjugate to club 4. But, by T2, B must contain at
least two distinct members, ¢ and d. Since 4 and B are conjugate, it follows
that a, b, c, d are four distinct people of S.

Section 1.4

4. (a), (b) Use Venn diagrams.

5. (b) See L. S. Shively, An Introduction to Modern Geometry (John Wiley and
Sons, Inc.), p. 141, or Nathan Altshiller-Court, College Geometry (Barnes and
Noble, Inc.), pp. 72-73.

6. (c) A definition of an entity (such as an angle bisector) does not prove that the
entity exists; existence is established by actual construction of the entity.

7. Take the angle in the law of cosines equal to 90°.

9. (a) We have (x — r)(x — s) = x* — px + g>
(h) Denote the parts by x and a — x. Then x?> — (a — x)? = x(a — x), or
x2 + ax — a® =0.

10. (b) First trisect the diagonal BD by points E and F. Then the broken lines

AEC and AFC divide the figure into three equivalent parts. Transform these
parts so as to fulfill the conditions by drawing parallels to AC through E and F.
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(c) Draw the line through P and the midpoint of the median of the trapezoid.
(d) Through B draw BD parallel to MN to cut AC in D. Then, if the required
triangle is AB’C’, AC’ is a mean proportional between AC and AD.

(e) Let ABC be the given triangle. Draw AB’ making the given vertex angle
with AC and let it cut the parallel to AC through B in B’. Now use 10 (d),
Section 1.4.

Section 1.5

1.

(c) he = b sin A.

(f) ha =t, cos[(B — C)/2].

(8) 4h2+ (b. — ca)* = 4m?2.

(h) b, — ¢, = 2R sin(B — C).

(i) 4R(ro — r) = (ro — r)*> + a®. If M and N are the midpoints of side BC
and arc BC, then MN = (r, — r)/2; clearly any two of R, a, MN determine the
third.

(G) ha = 2rr.f(ra — ).

. (b) See Problem 3336, The American Mathematical Monthly, Aug. 1929.

(c) See Problem E 1447, The American Mathematical Monthly, Sept. 1961.
The solution given in this reference is a singularly fine application of the method
of data.

. (b) Let M be the midpoint of BC. The broken line EMA bisects the area.

Through M draw MN parallel to AE to cut a side of triangle ABC in N. Then
EN is the sought line.

. Take the radius of C as one unit and set p, = 2k sin(w/k), P, = 2k tan(w/k),

ar = (1/2)p cos(m/k), A = (1/2)P.

. See, e.g., G. A. Wentworth, Plane and Solid Geometry, revised edition, 1899,

Ginn and Co.

7. (@) (GC)? = (TW)? = 4ryr,.

. (¢) The volume of the segment is equal to the volume of a spherical sector

minus the volume of a cone. Also, a?> = h(2R — h).
(f) The segment is the difference of two segments, each of one base, and having,
say, altitudes « and v. Then
V = 7Ru? — v?) — n(u® — v3)/3
= 7wh[(Ru + Rv) — (u* + wv + v?)/3].

But 42 + wv + v? = k% + 3uv, QR — wu = a?, 2R — v)v = b2. Therefore

V = wh{(@® + b»)/2 + (u? + v?)/2 — h*/3 — ur]
= wh[(@® + b3)/2 + h*[2 + wv — h?*/3 — wv), etc.

Section 1.6

1.

(b) Let line AB cut line C in point D. Find T and T’ on line C such that DT
= DT’ = (mean proportional between DA and DB). Draw circles ABT and ABT".
(c) Reflect the point in a bisector of the angles formed by the two lines.
(d) Let F be the focus and d the directrix. Find the reflection F’ of F in m.
Draw the circles through F and F’ and tangent to d.

(e) Two.
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2. (a) Mark off a chord of the given length in the given circle; draw a concentric
circle tangent to the chord; draw tangents from the given point to the second
circle.

(b) Denote AB by a, AC by b, BC by ¢, and X ADB by 6. Then, by the law of
sines, applied first to triangle BCD and then to triangle ABD,

sin 30°/sin 6 = a/c, sin f/sin 120° = a/(b + a).

Consequently, 1/4/3 = tan 30° = a?/c(b + a). Squaring both sides and recall-
ing that ¢ = b%? — a2, we find 2a3QRa + b) = b3(2a + b), or b> = 24°.

(c) Use the fact that triangles DCO and COB are isosceles, and the fact that
an exterior angle of a triangle is equal to the sum of the two remote interior
angles.

3. (b) Let I and E divide AB internally and externally in the given ratio. If Pis a
point on the desired locus, then PI and PE are the internal and external bisectors
of angle APB. It follows that P lies on the circle on IE as diameter.

For the second part of this problem, let 4 and B be the given points, O the
midpoint of 4B, s? the given sum of squares, and P any point on the sought
locus. By the law of cosines: (PA)? = (PO)? + (OA)? — 2(PO)(OA)cos(POA),
(PB)? = (PO)? + (OB)?* — 2(PO)(OB)cos(POB). Therefore s2 = (PA)? +
(PB)? = 2(P0O)? + 2(0A)?, whence PO is constant.

6. (a) Take the radius of the circumscribed circle as one unit. Then the side of the
regular heptagon is 2 sin(#r/7), and the apothem of the regular inscribed hexagon
is V3/2.

(b) Let a light ray, emanating from a point A4, reflect at point C on mirror m,
and then pass through a point B. If B’ is the image of B in m, path ACBis a
minimum when path ACB’ is a minimum.

9. (b) Let ABCD be the cyclic quadrilateral and let E on AC be such that <X CDE
= X ADB. From similar triangles CDE and ADB it follows that (EC)(BD)
= (AB)(DC). Likewise, from similar triangles ADE and BCD it follows that
(AE)(BD) = (BC)(AD). Therefore (BC)AD) + (AB)YDC) = (BD)(AE + EC)
= (BD)(AC).

(c) In part (b) take AC as a diameter, BC = a, and CD = b.

(d) In part (b) take AB as a diameter, BD = a, and BC = b.

(e) In part (b) take AC as a diameter, BD = ¢t and perpendicular to AC.
(h) (1) Taking the side of the triangle as one unit, apply Ptolemy’s Theorem to
quadrilateral PACB. (2) Taking the side of the square as one unit, apply
Ptolemy’s Theorem to quadrilaterals PBCD and PCDA. (3) Taking the side
of the pentagon as one unit, apply Ptolemy’s Theorem to quadrilaterals PCDE,
PCDA, PBCD. (4) Taking the side of the hexagon as one unit, apply Ptolemy’s
Theorem to quadrilaterals PBCD, PEFA, PBCF, PCFA.

10. (a) From the similar triangles DFB and DBO, FD/DB = DB/OD. Therefore
FD = (DB)?/0D = 2(AB)(BC)/(AB + BC).
(b) From similar right triangles, O4/OB = AF/BD = AF/BE = AC/CB =
(OC — 0OA)/(OB — 0OC). Now solve for OC.
(f) We have ax sin 60° + bx sin 60° = ab sin 120°.

11. For a very neat application of this theorem to the establishment of the Erdds-
Mordell inequality: “If P is any point inside or on the perimeter of triangle
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ABC and if p., ps, p. are the distances of P from the sides of the triangle, then
PA + PB + PC = 2(p. + ps + po),” see N. D. Kazarinoff, Geometrical
Inequalities, Random House (1961), pp. 84-87.

12. (a) V = 27?Rr?, S = 47>Rr.
(b) A distance of 2r/w from the diameter of the semicircle.
(c) A distance of 4r/3m from the diameter of the semicircle.

Section 1.7

1. @) x = hd/h + d).
(b) 8 cubits and 10 cubits.
(c) 20 cubits.

2. (a) Draw the circumdiameter through the vertex through which the altitude
passes, and use similar triangles.
(b) Apply Problem 2 (a), Section 1.7 to triangles DAB and DCB.
(c) Use the result of Problem 2 (b), Section 1.7 along with Ptolemy’s relation,
mn = ac + bd.
(d) Here 6§ = 0° and cos § = 1. Now use Problem 2 (b), (c), Section 1.7.

3. (b) Since the quadrilateral has an incircle we have a + ¢c=b + d =s.
Therefore s —a=c¢,s—b=d,s—c=a, s —d=b.
(c) In Figure S1 we have

a2+ c2=r2+ s+ m? + n* — 2(rn + sm) cos 0,
b2 +d?*=r?+ s>+ m* + n?> + 2(sn + rm) cos 6.

Therefore a*? + ¢? = b? + d? if and only if cos 8§ = 0, or 6 = 90°.

(d) Use Problem 3 (c), Section 1.7.

(e) The consecutive sides of the quadrilateral are 39, 60, 52, 25; the diagonals
are 56 and 63; the circumdiameter is 65; the area is 1764.

5. (b) x = 2.3696.
(c) x =4.4934.

7. (a) Find z such that b/a = a/z, then m such that n/z = a/m.

8. (a) Draw any circle £ on the sphere and mark any three points 4, B, C on its
circumference. On a plane construct a triangle congruent to triangle ABC,
find its circumcircle, and thus obtain the radius of . Construct a right triangle
having the radius of T as one leg and the polar chord of X as hypotenuse. It is
now easy to find the diameter of the given sphere.

(b) If d is the diameter of the sphere and e the edge of the inscribed cube, then
e = (d+/3)/3, whence e is one-third the altitude of an equilateral triangle of
side 2d.

Figure S.1
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(c) If d is the diameter of the sphere and e the edge of the inscribed regular
tetrahedron, then e = (d+/6)/3, whence e is the hypotenuse of a right isosceles
triangle with leg equal to the edge of the inscribed cube. See Problem 8 (b),
Section 1.7.

9. (a) Let the legs, hypotenuse, and area of the triangle be a, b, ¢, K, a = b.
Then a? + b? = ¢? and ab = 2K. Solving for a and b we find

V2 + 4K + V2 — 4K Ve + 4K — Ve — 4K
a= , b= .
2 2
11. (a) Following is essentially the solution given by Regiomontanus. We are given
(see Figure S2) p=b —c, h, q=m — n. Now b*> — m*> = h? = ¢ — n?,
or b> — ¢ = m? — n?, or b + ¢ = ga/p. Therefore

b=(ga+ p?»2p and m = (a + q)/2.

Substituting these expressions in the relation 542 — m? = h? yields a quadratic
equation in the unknown a.

Figure S.2

(b) Following is essentially the solution given by Regiomontanus. Here we are
given (see Figure S2) a, h, k = c/b. Set 2x = m — n. Then

4n* = (a — 2x)?,  4c* =4h* + (a — 2x)?,
4m?® = (@ + 2x)%,  4b* =4k’ + (a + 20

Then k2[4h% + (a + 2x)*] = 4h*® + (a — 2x)?. Solving this quadratic we ob-
tain x, and thence b and c.

(¢c) On AD produced (see Figure S3) take DE = bc/a, the fourth proportional
to the given segments a, b, c. Then triangles DCE and BAC are similar and
CA/CE = afc. Thus C is located as the intersection of two loci, a circle of
Apollonius and a circle with center D and radius c.

Figure S.3
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12.

Using standard notation we have
(rs)?> = s(s — a)(s — b)(s — o©),

or 16s% = s(s — 14)(6)(8), and s = 21. The required sides are then 21 — 6
= 15 and 21 — 8 = 13. This is not Pacioli’s method of solving the problem;
his solution is needlessly involved.

Section 1.8

1.

11.

13.

14.

15.

17.

18.

19.

20.

No, but induction may be employed to conjecture the proposition to which the
process is applied.

. Fold the vertices onto the incenter of the triangle, or fold the vertices onto the

foot of one of the altitudes.

. No. Only for so-called orthocentric tetrahedra are the four altitudes concurrent.

An orthocentric tetrahedron is a tetrahedron each edge of which is perpendicular
to the opposite edge.

. In the first three cases the binomial coefficients appear. Therefore one might

expect the pentatope to have S zero-dimensional, 10 one-dimensional, 10
two-dimensional, and 5 three-dimensional bounding elements.

(a) Parallelepiped, rectangular parallelepiped (box), sphere.
(b) Prism, right prism, sphere.

Instead of isogonal conjugate lines of a plane angle, consider isogonal conjugate
planes of a dihedral angle.

It holds for all convex polyhedra and, more generally, for all polyhedra con-
tinuously deformable into a sphere.

The list cannot be continued: there is no convex polyhedron all of whose
faces are hexagons. In fact, it can be shown that any convex polyhedron must
have some face with less than six sides.

(b) Let D be a point on the surface of P such that the distance CD is a minimum.
Show that D can be neither a vertex of P nor lie on an edge of P, and that CD
is perpendicular to the face F of P on which D lies.

The point is known as the isogonic center of the triangle; from it each side of the
triangle subtends an angle of 120°. It may be found mechanically by three
equally-weighted strings radiating from a common point and hanging over
pulleys located at the vertices of a horizontal triangular table. See H. Steinhaus,
Mathematical Snapshots (New York: Oxford University Press, 1950).

Draw, on cardboard, a,, a;, . . ., a, as successive chords in a circle so large
that the polygonal line made up of the chords does not close or cross itself.
Cut out the polygon bounded by the polygonal line and the radii to the end-
points of the polygonal line. Fold the cardboard along the n — 1 other radii
and paste together the two extreme radii, obtaining an open polyhedral surface.
Push the » free edges gently against a plane, thus forming an isosceles pyramid.

See Problem E 753. The American Mathematical Monthly, Aug.-Sept. 1947.
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Section 2.1

. Use Theorem 2.1.3 along with mathematical induction.

2. Start with AM = MB and then insert an origin at P.

3. Start with AB = OB — OA and then square both sides.

4. Insert an origin at P.

5. Set A4’ = 04" — OA = (0’A’ — 0'0) — OA, etc.

6. Insert an origin O and let M and N denote the midpoints of CR and d PQ.
Then 40M = 20R + 20C = OA + OB + 20C = OB + OC + 200 =
20P + 200 = 40N. Or, M and N clearly coincide if 4, B, C are not collinear;
now let C approach collinearity with 4 and B.

9. Insert an origin at O.

10. Use Theorem 2.1.9.

11. Use Theorem 2.1.9.

13. First consider the case where P is on the line and take P as origin; then let
P’ be the foot of the perpendicular dropped from P to the line.

14. Use Stewart’s Theorem.

15. Use Stewart’s Theorem.

16. By Problem 15, Section 2.1, t2 = bc[l — a?/(b + ¢)?], t? = ca[l — b*/(c + a)?].
Show that t2 — 3 = (b — a)f(a,b,c) where f(a,b,c) contains only positive
terms.

17. Use Stewart’s Theorem.

18. This problem is a generalization of Stewart’s Theorem in that the point P is
replaced by a circle.

19. (a) Let a line cut OA4, OB, OC, OD in A’, B’, C’, D’. Apply Euler’s Theorem to
A’, B’, C’, D’. Multiply through by p?, where p is the e perpendicular from O
onto line A’B’C’D’. Replace pA’B’ by (OA’)(OB’) sin A’OF’, etc.

(b) 2AAOB = (OA)(OB) sin AOB, etc. Now use Problem 19 (a), Section 2.1.

20. Take O at the center of the circle.

21. Consider three cases: first where O is within triangle ABC, next where O is
within ¥ BAC but on the other side of BC from A, then where O is within the
vertical angle of X BAC.

23. Consider the equation where A is replaced by a variable point X on the line.
Take any origin O on the line and obtain a quadratic equation in x = OX.
Take X = B, C, D in turn, obtaining three identities. Then the quadratic
equation has three distinct roots, and therefore is an identity. That is, X can
be any point on the line, e.g. A4.

Section 2.2

3. Each follows from Theorem 2.2.5 or Convention 2.2.4. Thus Theorem (a)

becomes: “ Through a given point there is one and only one plane containing
the ideal line of a given plane not passing through the given point,” and this
is an immediate consequence of Theorem 2.2.5. Theorem (b) becomes: *Two
lines which intersect a third line in its ideal point, intersect each other in their
ideal points,” and this follows from Convention 2.2.4.
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5.

6.

Multiply the identity of Problem 23, Section 2.1 by AD and then take D as an
ideal point.

Divide the identity of Problem 23, Section 2.1 by A_Q and then take Q as an
ideal point.

Section 2.3

2.
3.

BD/DC = BF|FL, etc.
If A’, B’, C’ are the feet of the perpendiculars and if DEF cuts A’B’C’ in T,
then BD/DC = B'T|TC’, etc.

5. Use Menelaus’ Theorem.

6. PD/AD = ABPC/ABAC, etc.

7. AP/AD = (AD — PD)/AD =1 — PD|AD, etc. Now use Problem 6, Section
2.3.

. AF|JFB = ACAP/ABCP, AE|EC = APAB/ABCP.

9. Apply Menelaus’ Theorem to triangles ABD and BCD.

10. Use mathematical induction. The converse is not true. A correct converse is:
If the relation holds and if n — 1 of the points 4’, B’, C’, D’, . .. are collinear,
then all n of them are collinear.

11. Apply Menelaus’ Theorem to triangles ABD and BCD.

12. Let the plane cut line DB in point P. Use Menelaus’ Theorem on triangle ABD
with transversal D’A’P and on triangle CBD with transversal C’B’P.

13. Use Theorem 2.1.9.

14. In the figure for Problem 13, Section 2.3, draw a sphere with center O to cut
OA’, OB, 0C’,0OD’, OE’,OF 'in A, B,C, D, E, F.

15. AA’/A’B = (OA sin AOA)/(OB sin A’OB), etc.

Section 2.4

1. (b) Use the trigonometric form of Ceva’s Theorem.

(c) Use the trigonometric form of Ceva’s Theorem.

2. Use Ceva’s Theorem.

3. Use Ceva’s Theorem.

4. Use Ceva’s Theorem.

6. Use Menelaus’ Theorem.

7. Use the trigonometric form of Ceva’s Theorem.

8. Use the trigonometric form of Menelaus’ Theorem.

9. Use Ceva’s Theorem along with the fact that (AF)(AF’) = (AE)(AE"), etc.
10. Let D, E, F be the points of intersection of the tangents at 4, B, C with the

opposite sides. Then triangles ABD and CAD are similar, and BD/DC =
—BD|CD = —(BD)?*/(BD)(CD) = —(BD)*/(AD)*> = —c?/b?, etc. Or obtain
the result as a special case of Pascal’s “ mystic hexagram > theorem, by regarding
ABC as a hexagon with two vertices coinciding at 4, two at B, and two at C.
Or use the fact that, by Problem 2, Section 2.4, the given triangle and the triangle
formed by the tangents are copolar.
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11.
12.

13.
14.

15.

16.

18.

19.

20.

21.

22.

Use Desargues’ two-triangle theorem.

Use the trigonometric form of Menelaus’ Theorem, or use Problem 12, Section
2.1.

Use the trigonometric form of Menelaus’ Theorem.

Let DD’, A’Bintersect in E and A’D’, BD in G. Then, using Menelaus’ Theorem
on triangle GA’B and transversal D’DE we find

(BD/DG)(GD'|D’A’XA’E/EB) = —1.
But BD = CA, GD’ = BB’, DG = AA’, D'A’ = B'C. Therefore

(CA/AA’AE|EB)YBB’|B'C) = —1.
Apply Menelaus’ Theorem to triangle A BD with transversal EG and to triangle
CBD with transversal HF.
Triangles CAC’ and B’AB are congruent and therefore sin ACC’/sin B’BA
= sin ACC’[sin CC'A = AC’/CA = AB/CA, etc.
Let CE cut ABin T, AD cut CB in S, and the altitude from B cut AC in R.
Then AT/TB = EA/BC = AB/BC, BS/SC = AB/CD = AB/BC, CR/RA =
(BC/AB)2.
Let t4, ts, tc be the tangent lengths from D, E, F. Then t3 = (BD)(CD),
t2 = (CE)AE), t2 = (AF)(BF). But, by Menelaus’ Theorem,

—1 = (BD/DC)(CE/EA)AF|FB).

It now follows that —(z.ts¢c)> = —[(AF)(BD)(CE)1>.
Multiply together results obtained by applying Menelaus’ Theorem to triangles

ABC, FBD, ECD, ECD, AFE, AFE, FBD with transversals DEF, AX, AX,
BY, BY, CZ, CZ respectively.

Let AX, BY, CZ, cut BC, CA, ABin A’, B, C’; let PO, QO, RO cut OR, RP,
PQ in P’, Q’, R’. Then we have

(QX/XR)(RY|YP)PZ|ZQ) = 1,
(CP/PBY(BR/RAY(AQ/QC) = 1.
But, by Theorem 2.1.9,
(QP'|P’R)/(QX/XR) = (CP/PB)/(CA’|A'B),
(RQ'/Q’P)/(RY|YP) = (A0/QC)/(AB'|B’C),
(PR'|R'Q)/(PZ|ZQ) = (BR/RA)/(BC’|C’A).
Setting the product of the left members of the above three equations equal to
the product of the right members, it now follows that
(CA'|A'BYBC|C’AYAB'|B'C) = 1.
We have (BI/IC)CE|B'ANA2/2B) = —1, (BA/ACNCYAB)A2/2B) = —1,
(AC’/C’B)(B4[4C)(C3/34) = —1, (CB’/B’A)(A5/5B)(B4/4C)= —1, (BA’/A'C)

(C6/6A)(45/5B) = —1, (AC’/C’B)(BI[1C)C6/6A) = —1. Multiply together
the first, fifth, and third of these equations; divide by the product of the other

three; obtain (B1/C1)(C7/B7) = 1, whence 1 = 7.
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Section 2.5

3.

On a line other than / through C construct A’ and B’ such that CA’/CB’ = r.
Let AA’ and BB’ intersect in D’. Through D’ draw the parallel to CB’ to intersect
lin D.

. (a) Expand.

(b) Expand.

. Insert an origin at O in the expansions of the two cross ratios. Now show that

(OB — OA)OB — OC)OA’ — OC’) = (OB’ — 0A4’)Y(OB — OC)(OC — OA).

6. By Theorem 2.5.2 (3), (AC,BP) = 1 — m, (AC,BQ) = 1 — n.

. If A, B and C, D separate each other then (4B,CD) = r, where — © < r < 0.

Define § such that r = —cot? 0. Let the semicircles on AB and CD intersect
in V. Show that the angle of intersection of the two semicircles is 2.

Section 2.6

3.

Let A, B, C’, D', P’ be the points of contact of the tangents a, b, c, d, p,
respectively. Let O be the center of the circle and K any fixed point on the
circle. Then X AOP’ = (X A'OP’)[2 = X A’KP’, etc. It follows that (4B,CD)
= O(AB,CD) = K(A’B’,C'D’).

. Let FA and DC intersect in T, BC and ED in U, BC and FE in V, and AF and

DE in R. Consider the four tangents DE, AB, EF, CD. By Problem 3, Section
2.6, (RA,FT)= (UB,VC), whence D(EA,FC) = D(RA,FT)= E(UB,VC) =
E(DB,FC). It now follows, by Corollary 2.6.3, that DA, EB, FC are concurrent.

. Expand and use Menelaus’ Theorem.

6. Set (MN, AA’) = k. Expand and insert an origin at M. Solve for MA’ to obtain

MA = _(W)(W)/[km + (1 — k)MA], with similar expressions for MB’,
MC’, MD’. NoExpg_r_l_q (A’i’, C’D’); insert an origin at M; substitute the ex-
pressions for MA’, MB’, MC’, MD’; simplify to obtain (4B,CD).

7. The proof of Theorem 2.6.9 as given in the text applies here.

. Let CC’, A’B, B’A be concurrent in P; let BB’, C’A, A’C be concurrent in Q.

Let CB’ and B’C intersect in O, PB’A cut OC’B in X, PCC’ cut QBB’ in Y,
and PA’'B cut QC’A in Z. Then A(OX,C’'B) = B'(0OX,C’Q) = B'(CP,C’Y)
= Q(A’P,ZB) = A(A’X,C’B). It now follows that O, 4, A’ are collinear.

Section 2.7

“w AW N

N N

. Apply Theorem 2.7.3 (2) to the homographic pencils A(X’) and B(X).

. Apply Theorem 2.7.3 (2) to the homographic pencils R(A4) and Q(A).

. Apply Theorem 2.7.3 (1) to the homographic ranges (B) and (C).

. (L) and (M) are homographic ranges. F(L) and H(M) are homographic pencils

having FH as a common line.

. B(Y) and C(X) are homographic pencils having BC as a common line.
. (B) and (R) are homographic ranges having £ as a common point.
. Let Q and Q’ be the infinite points on ranges (4) and (A4") respectively. Then

(AX,IQ) = (A'X",Q'J)). That is AI/IX = J'X’|A’J". Therefore (IX)(J'X)
= (IA)(J’A"), a constant.
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10.

11.

12.
13.

. Let A and A’ be any positions of X and X’. Then (IX)(J'X") = (IAJ'A).

Hence, reversing the steps in the > proof of Problem 8, Section 2.7, we get
(AX,IQ) = (A'X’,Q'J’). Or, since (IX)(J'X’) = constant, it immediately follows
(from Theorem 2.7.4) that (X) = (X”). (This is the converse of Problem 8, Section
2.7.)

(a) Pencils ¥(P) and V(P’) are congruent.

(b) Apply Problem 8, Section 2.7.

Let the polygon by A4, ... A,-1A,, and let the sides A4,4,, A, A3, ...,
A.- 1A, each pass through a fixed point. Then (4,) = (4,).

Parallel the proof of Problem 11, Section 2.7.

Use Theorem 2.6.7 and the facts that AC/A'C’ = VA/VC’, DB/D'B’ =
VB/VD’, CB/C’'B’ = VB|/VC’, AD|A'D’ = VA|VD'.

Section 2.8

1.

(a) AC/CB = AP/MB = AP/BN = AD|DB.
(b) If O is the center of the semicircle, (OC)YOD) = (OT)?* = (OB)>.
(c) Apply Theorem 2.4.1.

2. (OB)? = (OCXOD) = (0'C — O'0Y0’D — 0'0) = (00’ + O'C)(00’ — O°C).

0 N AN W

11.

12.
13.

. (a) The angles in the pencil are multiples of 45°.

(b) Let AB be the diameter, CD the chord, and P a point on the circle. Then
P(AB,CD) = A(TB,CD), where AT is the tangent at 4. But A(TB,CD) =
(sin TAC/sin CAB)/(sin TAD/sin DAB).

(c) (AC,LM) = B(AC,LM) = B(AC,DE). Now use part (b).

(d) Use part (b).

. (a) Use Theorem 2.8.3.

(b) Show that PA bisects X QPR.
(¢) We have AU/UT = [AB cos(A4/2))/[BT sin TBU)] and also AV/VT =
[AC cos(A/2))/[TC sin TCV), AB/AC = BT|TC, x TBU = X TVC.

. Use Problem 3(b), Section 2.8.

. By Theorem 2.1.9 show that AC/CB = PA/PB = AD|DB.

. Use Theorem 2.8.11 and Problem 6, Section 2.8.

. Draw any circle S cutting the circles drawn on AB and CD as diameters and

let O be the intersection of the common chords of S and each of the other
two circles. The circle with center O and radius equal to the tangent from O
to either of the circles on AB and CD as diameters cuts the line ABCD in the
required points P and Q. The construction fails if the pairs 4,B and C,D
separate each other.

. Use the theorems of Ceva and Menelaus.
10.

(TANTC)/(SANSC) = (AATC)[(AASC) = TU/SU = TV|SV = (ABTD)/
(ABSD) = (TBXTD)/(SB)(SD).

By Theorem 2.8.4, 2/AB = 1/AC + 1/AD = (AD + AC)/(AC - AD) =
240/(AC - AD).

(OP)(OP)) = (0B)* = (00)(0Q)).

Let AB cut PQ in O. Then O is the midpoint of PQ and (OL)Y(OM) = (0Q)>.
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14.

15.
16.

17.

18.

19.

20.

22.

23.

24,

25.

Let R and r be the radii of the semicircle and X respectively. Draw a concentric
semicircle of radius R — r and note that r is the geometric mean of AC — r
and CB — r.

Use Corollary 2.6.1.

We have AC/CB —AD/DB consequently (4C)*/(4D)* = (CB)*/(DB)* =
(OB OC)’/(OB OD)2 (OD OB - OD- OC)’/(OD)’(OB OD)2 =
(OD OB - OB- OB)’/(OD)’(OB OD)2 = (OB)?/(OD)* -(OC)(OD)/(OD)’
= OC/OD.

We have (DB, PV) = —1, whence (by Problem 16, Section 2.8) XP/XV =
(DP)*/(DV)?, with similar relationsfor Y and Z. Now apply Menelaus’ Theorem
to triangle PVU.

Draw the diametral secant AMN and let it cut the chord of contact T'T of the
tangents from 4 in R. Now, if O is the center of the given circle, (OR)(OA)
=(0T)2. 1t follows that if circle = on AB as diameter cuts the given circle in
P and Q, then OP is tangent to Z. Thus, if .S is the center of =, SP is tangent to
the given circle. Therefore (SC)(SD) = (SP)* = (SB)?, and (4B,CD) = —1.
Take O, not on line ABC, and draw OA4, OB, OC, OP, OQ, OR. Through A
draw AM parallel to OQ, and let OB, OC, OP, OR cut AM in B’, C’, P’, R'.
Now B’ is the midpoint of AC’, P’ is the first trisection point of B'C’, R’ is
the second trisection point of AB’. It follows that R’ is the midpoint of AP’,
whence O(QR,PA) = —

The circle is a circle of Apollonius for PP’ and for QQ’. It follows that if V
is any point on this circle, then VB bisects angles PVP’ and QVQ’.

Since (4B,PQ) = —1, we have 2/AB = 1/AP + 1/AQ. Therefore 20B/AB
= 2(0A + AB)/AB = 20A/AB + 2 = (OA/AP + 1) + (OAJAQ + 1) =
(OA + AP)/AP + (04 + AQ)/AQ = OP/AP + OQ/AQ.

Take E and E’ as a fixed pair of harmonic conjugates. Now ranges (F) and (F”)
are homographic. Therefore pencils E(F)and E’(F’) are homographic. But EE’
is a common line of these two pencils. Itfollows that the intersections of EF

and E’F’ lie on a line. But B and C are two of these intersections. Therefore
EF and E’F’ intersect on line BC.

Let R be the harmonic conjugate of O with respect to P and Q. Then the locus
of Ris a stralght line » through the intersection of the two given lines, and
2/OR = 1/OP + 1/0Q. Now draw line n’ parallel to » and through the mid-
point R’ of OR. Then 1/OR’ = 1/OP + 1/0Q, and r’ is the sought line.
Replace 1/OP, + 1/OP, by 1/0X,, 1/0X, + 1/OP5 by 1/0X;, and so on,
using Problem 24, Section 2.8.

Section 2.9

2.
3.

Use Theorem 2.8.5.

Let the circles have centers O and O’ and intersect in P. The circles are orthog-
onal if and only if triangle OPO’ is a right triangle—that is, if and only if
[(c/2)d)2 = (rr)]2.

. Use Theorem 2.9.2 (3).

Suggestions for Solutions of Selected Problems

395



5. Let M be the center of the given circle and N the center of circle CPQ. Now
XPCQ = X PNM and X PAQ = X PMN. Therefore X PNM + X PMN =
XPCQ + ¥XPAQ = 180° — £ CQA = 90°. It follows that triangle NPM
is a right triangle and the two circles are orthogonal.

6. This is a converse of Problem 5, Section 2.9, and may be established by reversing
the proof of Problem 5.

7. Use Problem 5, Section 2.9.

8. By symmetry the center of the circle through the four points must be the
midpoint of the line of centers of the two given circles.

9. Let R and S be the centers of circles AMO and BMO respectively. Then
X ROM = (X AOM)[2 and £XSOM = (X BOM)/2. Therefore ¥ ROS = 90°.

10. (BH)(BE) = (BD)(BC) and (CH)(CF) = (CD)(CB). Therefore (BH)(BE)
+ (CH)(CF) = (BC)>.

Section 2.10

1. The tangents drawn from the radical center to the three circles are all equal in
length.

3. Use Theorems 2.10.6 and 2.10.7.

4. The midpoint of a common tangent to two circles has equal powers with respect
to the two circles.
5. P is the radical center of the three circles.
6. (a) The altitudes are common chords of pairs of the circles.
(b) Let A, B’, C’ be the feet of the altitudes and H the orthocenter. Then A4’,
BB’, CC’ are chords of the three circles and (AH)(HA') =(BH)HB') =
(CHYHC).
7. (a) Draw the diameter of C, through the center of C,.
(b) Draw the chord of C, perpendicular to the diameter of C, through P.
(c) Use part (b) and the fact that P has equal powers with respect to the three
circles.
(d) If circle M(m) bisects the given circles A(a) and B(b), then (MA)> + a?
= m? = (MB)? + b?, whence (MA)? — (MB)? = b*> — a2
(e) The center of the given circle has equal powers with respect to all the
bisecting circles.
8. Use Theorem 2.10.6 (1).
9. (a) The center of the sought circle is the radical center of the two given circles
and the given point.
(b) If the two given circles are intersecting, use part (a) and Theorem 2.10.11.
10. The required circle is the radical circle of the three circles having the given
points as centers and the given tangent lengths as radii.
11. See Art. 113 in Johnson’s Modern Geometry, or Art. 471 in Altshiller-Court’s
College Geometry (listed in bibliography of Chapter 2).
12. (a) A circle concentric with the given circle.
(b) A circle whose center is midway between the centers of the given circles.
(c) A straight line parallel to the radical axis of the given circles. Use Problem
11, Section 2.10.
(d) A circle coaxial with the given circles. Use Problem 11, Section 2.10.
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13.

(a) Use Theorem 2.10.9 (3).
(b) Use Theorem 2.10.11.

14. The point of concurrence is the radical center of the given circle and any two

15.

circles of the coaxial pencil.

If the three circles are distinct, their radical axes must be concurrent.

Section 3.1

1.

(a) Onto and one-to-one.

(b) Not onto; 3 is not the image of any element of A.

(c) Not onto; 2 is not the image of any element of A.

(d) Not onto; no even integer is the image of any element of A.
(e) Onto and one-to-one.

(f) Onto and one-to-one.

. Let r’ be any real number and let r be a real root of x> — x = ¢’. Then r — 1/,

whence the mapping is onto. The mapping is not one-to-one since 0 — 0 and
1—0.

. n—>4n* + 12n + 9, n—>2n2+ 3, n—>n*,n—>4n + 9, n — 4n* + 12n?

+9, n—4n* + 12n% + 9.

7. 8S=IS=(T'DHS=T-Y(TS)=T-1=T-'.
8. Since (T, T,)X(T7'T3") = I it follows (by Theorem 3.1.11) that T7{!T3!

= (T, Ty)".
9. T-'T = I. Therefore, by Theorem 3.1.11, T = (T-!)-1.
1. (T, TY" = (T = TiN(T:T)' = Ti'(T3'T3") =
T{'T3'T3
12. (@) (STS-YH)-! =(S-H)-'T-1§-t = ST-'S-L.
(b) (STYTSXST) ' = (STSTXT-'S~') = ST.
(©) (ST, S-)(ST,SY)= S(T, T,)S .
13. G1 is satisfied by Definition 3.1.5, G2 by Theorem 3.1.9, G3 by Theorem
3.1.10 (1), and G4 by Theorem 3.1.10(2).
Section 3.2
1. (a) (2,1), (b) (— 191)7 (C) (ly_ 1)9 (d) (1’_ 1)9 (e) (_ la_ l)a (f) (29_-2) (g)> (4’_2),
(h) (1,1/2), () 2, 1), (j) (—2,2), (k) (—2,2), (1) 2—2+/2,0).
2. No, for all parts.

3.IfA=A,then O =A. If B=B',then O =B. If A # A, B # B’,and A4’

4.

is not parallel to BB’, then O is the point of intersection of the perpendicular
bisectors of A4’ and BB’. If A # A’, B # B’, AA’ is parallel to BB’, and AB
is not collinear with A’B’, then O is the point of intersection of lines 4B and
A’B’. If AB is collinear with A’B’, then O is the common midpoint of 44’
and BB'.

Obvious from a figure.
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5. Place an x axis on BC with origin at the midpoint of BC.

. Obvious from a figure.

9. (a), (b), (c) Obvious from a figure.

10.

11.
12.

13.
14.

(a) The midpoints of the sides of a quadrilateral form a parallelogram.

(b) Use part (a).

Obvious from a figure.

Let R(0,0) carry P and Q into P” and Q”; let R(O’,—0) carry P’ and
Q” into P’ and Q’. Now the angle from directed line PQ to directed line P”’Q”

is 0, and the angle from directed line P"Q” to directed line P’Q’ is — 0. It follows
that P’Q’ is parallel to PQ. Also, P'Q’ = PQ.

On line 0,0, such that O, P = (1 — k;)0,0,/(ky — k).

Let T(AB) carry P into P;, R(l,) carry P, into P,, T (CD) carry P, into P3,
R(/;) carry P5 into P’, R(l,) carry P, into P,. Then T(CD) carries P, into P’.
From the figure it is easily seen that P, P; P’'P, is a rectangle and that <X P, OP,
= 20.

Section 3.3

2.

Let a common tangent to circles A(a) and B(b) cut the line of centers AB in
point S. Draw the radii to the points of contact of the common tangent.
Then, from similar triangles, SA4/SB = a/b, etc.

5. Use Theorem 3.3.9.
6. Let P be any point on the circle of similitude of the two given circles A(a),

B(b). Then PA/PB = a/b, or (PA? — a?)/(PB* — b?®) = a*/b®>. Now use
Problem 12 (d), Section 2.10. For a direct proof not depending upon Casey’s
Power Theorem, see Daus, College Geometry, p. 91.

7. Use the theorem of Menelaus.

8. This is a special case of Problem 7, Section 3.2.
9. Its distance from A is k2c/(k? — 1), where k = afb.

10.

12.

13.

Use Theorem 2.9.3.

(b) We have, power of A, = (A, M,)(A:H,) = (4,A3)(A:H)[2. Similarly,
power of A, =(4:4:)(4:1H3)/2. It follows that the power of 4, is
[(A143) (A1 H3)+(A142) (A H5) }/4.

Let the given triangle ABC have altitudes AD, BE, CF, orthocenter H, circum-
center O, and nine-point center N. Let the tangential triangle A’B’C’ have
circumcenter O’. Now triangles DEF and A’B’C’ are homothetic. But H is
the incenter (or an excenter) of triangle DEF and O is the incenter (or corres-
ponding excenter) of triangle A’B’C’. N is the circumcenter of triangle DEF
and O’ is the circumcenter of triangle A’B’C’. It follows that H, O, N, O’
are collinear.

Let Y,, Y,, Y; be the images of X;, X,, X5 under the homothety H(H,2),
which carries the nine-point circle into the circumcircle. Show that triangle
Y, Y, Y; is equilateral.
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14.

15.

If the Euler line is parallel to side 4, A; we have OM,; = (A, H,)/3, or Rcos A,
= (2R sin A, sin A43)/3, R the circumradius. That is, cos A,/sin 4, sin 4,
= 2/3. But cos 4; = —cos(4; + A3) = sin A, sin A3 — cos A, cos A3, etc.
Also see Problem E 259, The American Mathematical Monthly, Oct. 1937.
The trilinear polar of the orthocenter is the radical axis of the circumcircle
and the nine-point circle.

Section 3.4

2.
3.

=R IENTC NEV I N

10.

(a), (b) Use Theorem 3.4.7.

(a) Use Theorems 3.4.4 and 3.4.5.
(b) Use Theorem 3.4.9.
(¢c) Use Theorems 3.4.7 and 3.4.9.

. (a) Obvious from a figure.

. Use Theorem 3.4.9 and Lemma 3.4.8.
. Obvious from a figure.

. Easily shown from a figure.

Use Lemma 3.4.8.

. (a) Use Theorem 3.4.9.

(b) For brevity represent R(/;), R(l2), R(I3), by R, R,, Rj respectively. By

Theorem 3.4.10, R, R; R,and R; R, R, are glide-reflections, whence (R, R3 R,)?

and (R; R, R,)? are translations. Since translations commute we have
(Rle Rz)z(Rs R, Rl)2 = (Ra R, RI)Z(RIRS Rz)z,

or

RiR3R; RiIR3R; Rz R R\R3; R, Ry = Rz R RiR3; R RiR i R3 R, RiRs R,
or, since R;R; =1,

Rl(R3 R, R1R3 Rz)sz = (Rs R, RiR; Rz)z,
or
Ry(R3 R2 RyR3 R;)* = (R3s Rz RyR3 R2)*R,.

Since R; and (Rs R R;R; R;)?> commute, it follows that (R; R, RiR;3 R,)?,
which must be a translation or a rotation, is a translation along /,.

(©) G(l5,4,42)G(l2,A3 A1)G(l1,42 A3)
= R3 T(A142)R; T(A3 A1)R,1T (A2 45)
= Rs T(AxAz)T(Aa Ax)Rz R, T(Az Aa)
= R3T(A3 A2)R; R, T(A; A3)
= R3 T(A3 A2)R(A3,2% A3)T (A2 43)
= R3R(A;,2¥X A3).

(d) Use Theorem 3.4.5.
(e) Ri3R;R,, being an opposite isometry, is a glide-reflection. To find which
glide-reflection it is, consider the fates of H; and Hj.

R(I5)R(L)R(l,) is an opposite isometry, and therefore (by Theorem 3.4.9)
a reflection in a line or a glide-reflection. But O is an invariant point.

Suggestions for Solutions of Selected Problems

399



Section 3.5
2. (a), (b) Use Theorems 3.5.3 and 3.5.4.
3. (a) Use Theorem 3.4.9.

(b) Use Theorem 3.5.4.

4. (a), (b) Obvious from a figure.

5. If the isometry is opposite, it is a reflection or a glide-reflection; in either case
the midpoints of segments PP’ lie on the axis of the transformation. If
the isometry is direct, the result follows from Theorem 3.5.6, the locus de-
generating to a point if the isometry is a half-turn.

6. The maps are related by a direct nonisometric similarity, that is, by a homology.

7. (a) A translation or a homology.

(b) A glide-reflection or a stretch-reflection.

8. Consider a triangle ABC; it is carried into a triangle A’B’C’ whose sides are
parallel to the corresponding sides of triangle ABC. It follows that the two
triangles are coaxial (on the line at infinity), and thus (by Desargues’ two-
triangle theorem) also copolar at a point P. If P is an ideal point, the similarity
is the translation 7(44"); if P is an ordinary point, the similarity is the ho-
mothety H(P,A’B’/|AB).

10. Use Theorem 3.5.6.

Section 3.6

1. (a) The figure consists of certain parts of four concurrent circles.
(b) The figure consists of certain parts of two circles and of two lines.

2. (@) A system of coaxial intersecting circles.
(b) A system of coaxial tangent circles.
4. (a) Let OB cut the given circle again in M. Then (OM)(OB) = (OC)(OC"),
or OB = (0OC)(0C")/[2(0C) = O0C’|2.
(b) Denote the center of inversion by O and the center of K’ by M, and let OM
cut Kin S and T and K’ in S” and T, where San:d_S’ , and Tand 77, are
cgrespgrgling points under the inversion. Now (OC)(OC’) = (0OS)(OS")=
(OT) (0OT’) and
(MO)(MC’) = OM(OM — OC’) = OM[(0S’ + OT)[2 — (OTXOT")/OC]
= OM[(0S’ + OT)/2 — 2(0T)OT)/(OS + OT)]
= OM[(0S’ + OT')(OS + OT) — 4OT)OT))/2(0S + OT)
= OM(OT — OS)0S’ — OT")/40C = OM(Q2CT)(2MS")[40C
= (MS'|CT)(CTY(MS") = (MS")*.
There are much easier ways to solve this problem; see, e.g., Problem 12,

Section 3.7.
(d) Let the centers of the circles be C and C’ and let their common chord ST

cut CC’ in M. Then (CM)(CC’) = (CS)2.
Section 3.7

1. Invert with respect to O.
2. Invert with respect to A4.
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C-IN-ER- S VINFEN

11.

. (a) If C’is any point on a semicircle having diameter A’OB’, the circles A’'OC”’

and B'OC’ are orthogonal.

(b) If B’, C’, D’ are three collinear points and A4 is a point not collinear with
them, the circles AB’D’ and AC’D’ intersect the lines 4B’ and AD’, respectively,
in equal or supplementary angles.

. Invert with respect to A.
. Invert with respect to M.

Invert with respect to any one of the four points.

. Invert with respect to T.
. Invert with respect to a point of intersection of K and K.
. Invert with respect to A.
10.

Invert with respect to the given point and discover that the sought locus is the
circle through the given point and orthogonal to the system of coaxial circles;
its center lies on the common tangent of the system and passes through the
common point of the system.

Invert with respect to C.

Section 3.8

10.

1. Consider two circles orthogonal to C, and C,.

2. Invert with respect to O, then use Menelaus’ Theorem and Theorem 3.7.5.
3.

4. (a) Let P be any point. Let P’ be the inverse of P for circle A(a) and let P”

Invert with respect to a point on C, and show that #%/r,r, is invariant.

be the inverse of P’ for circle B(b). Let Q be the inverse of P for circle B(b).
Now invert the figure with respect to circle B(b). Since circle A(a) inverts into
itself (Theorem 3.6.4) and P and P’ are inverse points for circle A(a), it follows
(by Theorem 3.7.4) that Q and P” are also inverse points for circle A(a).

(b) Invert the figure in circle K, and use Theorem 3.7.4.

. Invert with respect to D. Then A’C’ + C’'B’ = A’B’. But, if p’is the perpendicu-

lar distance from D to line A’B’C’, we have A'C’/p” = AC/r. Similarly, C'B’[p’
= CBJq, A'B’[p’ = AB|p, etc.

. Let a secant through O cut C in 4 and B and cut C’in A" and B’, where 4,4’

and B,B’ are pairs of inverse points. Then pp’ = (OA)(OB)OA’)(OB’) = r*.

. Invert the coaxial system into a system of concentric circles, a system of con-

current lines, or a system of parallel lines.

. (b) Let A and A’ be a pair of antinverse points for circle K and let J be any

circle through 4 and 4’. Let O be the center of K and let P and Q be the points
of_inters_ection of K and J. Let PO cut J again in R. Then (OP)(OR) =
(0OA) (0OA") = —r?, where r is the radius of K. It follows that P = Q.

. Let triangles PQR and UVW, inscribed in a circle K, be copolar at C. Let U’,

V’, W’ be the inverse of U, V, W for C as center of inversion and r? as power of
inversion. Let p denote the power of C with respect to circle K. Then CU’/CP
= r?}[(CUXCP) = r?Jp.

(a) Such a point is the center of a circle orthogonal to both of the given circles.
Invert with respect to this circle.

(b) When the radical center is outside all three circles.
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11.
12.
13.
14.
15.
16.
17.
18.
19.

22.

23.

Use Theorem 3.7.7.

Invert with respect to any point on their radical circle.

Use Theorem 3.7.5 and some circles of Apollonius.

Use Problem 13, Section 3.8.

Use Theorem 3.7.4 (2).

Use Ptolemy’s Theorem.

Subject the figure to the inversion 1(4,1).

Invert with respect to D and then apply Stewart’s Theorem.

(b) Let C,; be the circle orthogonal to circle ABCD and passing through A4
and C; let C, be the circle orthogonal to circle ABCD and passing through
B and D. Let C, and C, intersect in X and Y. Invert with respect to X.

We have OP = (BD)(A0)/AB and OP’ = (AC)(OB)/AB, whence (OP)(OP’)
= (BD)(AC)(AO)(OB)/(AB)?. But (BD)(AC) = (AD)?* — (AB)>.

If V is outside the circle, invert the circle into itself with respect to V as center
of inversion. If V is inside the circle, invert the circle into its reflection in V.

Section 3.9

3.

Let O and r be the center and radius of the circle and let Q' be the inverse of Q.
Then (PQ)? = (OP)? + (0Q)? — 2(0Q)(0Q) = (OP)* + (0Q)* — 2r2,

4. By Theorem 3.6.7, P and Q are inverse points for circle X, .
5. (a), (b) Use Theorems 3.9.7, 3.6.7, and 2.9.3.
6. (a) Let Q be diametrically opposite P on circle R. Then (by Problem 5 (b),

7.

Section 3.9) P, Q are conjugate points for K, , K,, K. Therefore the poles of
P for K,, K,, K; all pass through Q.

(b) Draw the circle on PQ as diameter. Prove that this circle is orthogonal to
the coaxial system. Then use Problem 5 (b), Section 3.9.

(c) Use part (b).

(d) Use part (b).

(e) Use Problem 5 (a) and (b), Section 3.9.

Let P’, Q' be the inverses of P, Q. Show that OP'YQ is similar to OQ’XP.

Section 3.10

1.
2.

Line ¢ is the polar of point 7.

Let T be the point of contact of the tangent to the incircle. Then the poles, for
the incircle, of AP, BQ, CR are the feet of the perpendiculars from 7 on the
sides of the triangle determined by the points of contact of the incircle with the
sides of triangle ABC.

. (a) Use Problem 6, Section 3.10.

(b) Use Problem 6, Section 3.10.
(c) The inverse of each vertex of the triangle is the foot of the altitude through

that vertex.

. (a) Let AB and CD intersect in M and let the tangents to the circle at 4 and B

intersect in N. Then —1 = (NM,CD) = B(NM,CD) = B(BA,CD) = (BA,CD)
= (AB,CD).

402 Suggestions for Solutions of Selected Problems



(b) By Theorem 2.6.7, (AB,CD) = e(AC/CB)/(AD/DB). Therefore (AC)(BD)
= (BC)(AD). The rest follows by Ptolemy’s Theorem.

. (@) Use Theorem 3.10.2.

(b) Use part (a) and Problem 5 (a), Section 3.9.

11. (a) The pole, with respect to the incircle, of YZ is A. Let P’ be the pole of 44’.
Then, since YZ and AA’ are conjugate lines, A(BC,4A’P’) = —1, whence AP’
is parallel to BC. It now follows that the poles of 44’, PX, YZ are collinear.
(b) Let the line through P parallel to BC cut YZ in S. Since YZ and PM are
conjugate lines, P(ZY,MS) = — 1. Therefore (RQ,M©) = —1 and M is the
midpoint of RQ.

Section 3.11

2. (a), (b), (c) Yes.

4. There is a unique isometry that carries a given noncoplanar tetrad of points
A, B, C, D into a given congruent tetrad A’, B’, C’, D’.

5. (a) See the proof of Theorem 3.4.6.

(b) See the proof of Theorem 3.4.5.

7. Use Theorem 3.11.4.

8. Use Problem 7, Section 3, 11.

11. Generalize the proof of Theorem 3.6.4.

13. For the first part, generalize the proofs of Theorems 3.6.10, 3.6.11, 3.6.12,
3.6.13. The second part follows since the intersection of two ‘spheres” is a
“circle.”

15. Invert with respect to the point of contact of .S; and S;.

16. Generalize the proof of Theorem 3.9.3.

Section 4.1

2. (b) Let A be the given point and BC the given line segment. Construct, by
Proposition 1, an equilateral triangle ABD. Draw circle B(C), and let DB
produced cut this circle in G. Now draw circle D(G) to cut DA produced in L.
Then AL is the sought segment.

3. It is a matter of existence; there exists a greatest triangle inscribed in a circle,
but there does not exist a greatest natural number. To complete argument I,
we must prove that a maximum triangle inscribed in a circle exists. The problem
illustrates the importance in mathematics of existence theorems.

Section 4.2

1.

(8) Let A and B be the two given points, P any point on the locus, and M the
foot of the perpendicular from P on AB. Then (MA)? — (MB)? = [(PM)?
+ (MA)?] — [(PM)?> + (MB)?] = (PA)?> — (PB)?> = a constant, whence M is
fixed. (9) Let 4 and B be the two given points, P any point on the locus, and
O the midpoint of AB. Then, by the law of cosines,

(PA)? = (PO)? + (40)*> — 2(PO)(AO)cos(AOP),
(PB)? = (PO)*> + (BO)* — 2(PO)(BO)cos(BOP).
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10.
11.
12.

13.

14.

15.

16.
17.
18.

It follows that (PA)?> + (PB)? = 2(PO)* + (AB)?*/2 = a constant, whence
PO = constant.

. Use loci (1) and (2).

. Let r be half the distance between the two parallel lines. Draw the circle of

radius r with center at the given point, to intersect the line midway between the
two parallel lines in the centers of the sought circles.

. Use loci (5) and (1).
. Locate the point as an intersection of some circles of Apollonius.
. Denote the initial positions of the balls by 4 and B, and the center of the table

by O. Construct the circle of Apollonius of 4 and B for the ratio 40/OB.

. Let the given points be 4 and B and let the required chords be AC and BD.

Let E, F be the midpoints of AB, CD; let O be the center of the circle. Then F
lies on O(E) and on E(s/2), where s = AC + BD.

. Let R and r be the radii of the given and required circles. Draw circles of radii

R + r concentric with the given circle.
Locate the vertex of the right angle by the method of loci.
Use loci (1) and (2).

Draw a line parallel to the given line at a distance from the given line equal to
the radius of the given circle. Let P be the foot of the perpendicular from the
given point to the drawn line. Find the center of the required circle as the inter-
section of the perpendicular to the given line at the given point, and the per-
pendicular bisector of PC, where C is the center of the given circle.

Draw a circle concentric with the given circle and having a radius equal to the
other leg of a right triangle of hypotenuse equal to the tangent length and leg
equal to the radius of the given circle.

In cyclic quadrilateral ABCD, let us be given angle 4, AB, BD, AC. First
construct triangle ABD and then find C by loci (1) and (6).

Locate the midpoint of the chord cut off by the circle on the required line by
loci (2) and (5).

Use two circles of Apollonius.
It is a rectangle having the given lines as diagonal lines.

(a) Use the locus of Problem 17, Section 4.2.
(b) Draw a rectangle having the given lines as diagonal lines and having one
side tangent to the given circle.

Section 4.3

wn S W N =

. Translate one circle through a vector determined by the given line segment.
. Use Problem 1, Section 4.3.

. Reflect two adjacent sides of the quadrilateral in the given point.

. Reflect one of the curves in the given line.

. Use Problem 4, Section 4.3.
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. Let ABC be the sought triangle and let D, E, F be the given points on the sides

BC, CA, AB respectively. Let BD/DC = mjn, CE|EA = p|q, AF|EB = r/s.
Find F; on line FE such that FE/EF;, = q/p. Next find F, on line F, D such that
F,D|/DF, = n/m. Then F, F lies along the line 4B, etc.

. Use the method of similitude.
. Let the given line and the given directrix meet in a point O; draw the line

determined by O and the given focus F. Take any point on the given line as
center and draw a circle tangent to the directrix. Now use O as a center of
homothety.

. Use the method of similitude.
10.

Take any point D’ on BA. Then take E” on CA such that CE” = BD’. Let
circle D’(B) cut the parallel to BC through E” in E’. Draw a line through E’
parallel to AC to cut BA in A’ and BC in C’. We now have a figure homothetic
to the desired figure, with B as center of homothety.

11. Use Problem 10, Section 4.3.

12. Subject C, to the homothety H(O,k), where k = OP,/OP,.

13. Subject the given circle to the homothety H(O,— k), where k is the given ratio.

14. Use Problem 12, Section 4.3.

15. Use the method of similitude.

16. Use the method of similitude.

17. Use General Problem 4.3.4.

18. Take any point O on one of the circles and let C, and C, denote the other two
circles. Now use General Problem 4.3.4.

19. Let (OP,)(OP,) = a>. Invert C, into C, in the circle O(a).

20. Use Problem 19, Section 4.3.

21. Use Problem 19, Section 4.3.

22. Invert with respect to the given point.

23. This is a special case of Problem 22, Section 4.3.

24. Increase the radius of each circle by half the distance between two of them,
obtaining in this way three circles of which two are externally tangent to one
another. Invert with respect to the point of contact of these two circles.

Section 4.4

1. Let A be an arbitrary point on m and let A" be the corresponding point on m’.
Let PA cut min A”. Then range (4"’) is homographic to range (4"). If D is a
double point of these two coaxial homographic ranges, PD is a desired line.

2. Find the double points of the homographic ranges cut by the two given pencils
on line m.

3. Join the vertices ¥V and V'’ of the pencils, and on V'V’ describe the circular arc

containing the given angle. Let corresponding rays of the two homographic
pencils cut this arc in points P and P’. We seek the double points of the concyclic
homographic ranges (P) and (P’).
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10.

11.
12.

13.

14.

15.

. Draw a line m parallel to the join of the vertices ¥ and V' of the given pencils.

Let corresponding lines of the two pencils cut m in 4 and A". Mark off 4”
on m such that A4” = VV’. Find the common points of the two coaxial
homographic ranges (4”) and (A4").

. Let the two given lines be m and m’ and the two given points be ¥ and V".

Let A be any point on m and find A" and 4” on m’ such that angles AVA" and
AV’A” are equal to the given angles. Now find the double points of the two
coaxial homographic ranges (4") and (A4”).

. Let ABC be the given triangle, m the given line, and P any point on m. Let P’

and P” be points on m such that AP and AP’ are isogonal lines for vertex 4
and BP and BP” are isogonal lines for vertex B. Now find the double points of
the two coaxial homographic ranges (P’) and (P”).

. Take any point 4" on BC, draw A’C’ in the assigned direction to cut B4 in C’,

draw C’B’ in the assigned direction to cut AC in B’. Draw A’B’ in the assigned
direction to cut AC in B”. Now find the double points of the two coaxial homo-
graphic ranges (B’) and (B").

. Take any point 4 on p and find the feet R and S of the perpendiculars from

A on rand s. Find R" and S’ on r and s such that RR’ and S’ have the given
projected lengths. Let the perpendicular to r at R’ and the perpendicular to s
at S’ cut ¢ in B and B’ respectively. Now find the double points of the two
coaxial homographic ranges (B) and (B’).

. Let P be the given point and m and n the given lines. Let 4 be any point on

m and let PA cut nin A’. Mark off the given lengths AB and A’B” on mand n
respectively, and let PB cut n in B’. We seek the double points of the coaxial
homographic ranges (B’) and (B”).

Take any point 4 on m and let AP cut m’in A’. Find A” on m’ such that 04/0’4”
is the given constant. Now find the double points of the two coaxial homographic
ranges (A4’) and (A4”).

Parallel the solution suggested for Problem 10, Section 4.4.

Let m and m’ be the two given lines, O their point of intersection, and P the
given point. Take any point 4 on m and let AP cut m’ in A’. Find A” on m’
such that triangle 40A” has the given area. Now find the double points of the
two coaxial homographic ranges (4") and (4").

Let ABC be the given triangle and P, Q, R the given points. Let 4’ be any point
on BC. Find B’ on CA such that X A’RB’ is equal to the first of the given angles;
next find C’ on AB such that ¥ B’PC’ is equal to the second of the given angles;
then find A” on BC such that X C'QA” is equal to the third of the given angles.
We seek the double points of the coaxial homographic ranges (4") and (4”).

Let P, Q, R be the three given points and let 4 be any point on the circle. Draw
AP to cut the circle again in B; next draw BQ to cut the circle again in C;
then draw CR to cut the circle again in 4. We seek the double points of the
concyclic homographic ranges (4) and (A4’). See Problems 13, Section 2.7, and
23, Section 3.8.

As in Problem 14, Section 4.4, inscribe in the circle a triangle whose sides shall
pass through the poles of the given lines, and then draw the tangents to the
circle at the vertices of this triangle.
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Section 4.5

1. (b) Use successive applications of part (a).
(d) Case 2. Find N on OM such that ON = n(OM) > (OD)/2. By Case 1
find N’, the inverse of N in O(D). Finally find M’ such that OM’ = n(ON").
(e) See Problem 4 (a), Section 3.6.
(f) See Problem 4 (b), Section 3.6.
(g) From the points 4, B, C, D one can, with a Euclidean compass alone,
obtain a circle k& whose center is not on AB or C(D). Under inversion in k,
line AB and circle C(D) become circles whose centers are constructible (by
parts (e) and (f)), and points on which are constructible (by part (d)). These
circles can then be drawn, and their intersections found. The inverses in k of
these intersections are the sought points X and Y.
(h) From the points 4, B, C, D one can, with a Euclidean compass alone,
obtain a circle k¥ whose center is not on AB or CD. Under inversion ink,
lines AB and CD become circles through the center O of inversion. The centers
of these circles are constructible (by parts (e) and (f)), and, since they pass
through O, the circles can be drawn. The inverse in k£ of the other point of
intersection of these circles is the sought point X.

2. Circle ABC is the inverse of line BC’ in circle A(B). Hence use Problem 4 (a),
Section 3.6.

3. Find C such that AC = 24B. Let A(B) and C(4) intersect in X and Y. Draw
X(A) and Y(A) to intersect in the sought midpoint M.

4. We suppose the center O of the circle is given. Draw 4(C) and D(B) to intersect
in M. Draw A(OM) to cut the given circle in X, Y. Then A, X, D, Y are vertices
of an inscribed square. The proof is easy.

Section 4.6

2. Case 1, P not on k. Draw PAB, PCD cutting k in A, B and C, D. Draw AD,
BC to intersect in M. Draw AC, BD to intersect in N. Then MN is the sought
polar.

Case 2, P on k. Draw any secant m through P and let R and S be any two
points on m but not on k. Find the polars r and s of R and S. Then r and s inter-
sect in M, the pole of m. PM is the sought polar.

3. (a) Find, by Problem 2, Section 4.6, the polar p of P, and let p cut k in Sand T.
Then PS and PT are the sought tangents.
(b) Find the polar p of P by Problem 2, Section 4.6. Or inscribe a hexagon
123456 in k, where 1 =2 = P, and use Pascal’s mystic hexagram
theorem.

4. (a) Draw (by Problem 4.6.1) a line m parallel to line ABC. Choose a point V
not on m or ABC and let VA, VB, VC cut m in A’, B’, C’. Let BA’ and CB’
intersect in V’. Draw V’C’ to cut ABC in D; draw DV to cut m in D’; draw
V’'D’ tocut ABC in E; etc.

(b) We illustrate with n = 5. In the figure of the solution for part (a),
let A’A and F’B intersect in U. Then B’U cuts AB in a point Y such that
AY = ABJS.
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Section 4.7

1. Consider an oblique cone with a circular base and vertex V. There exist circular
sections of the cone which are not parallel to the base; let ¢ be one of these
circular sections. A straightedge construction of the center of the circular
base of the cone would lead, by projection from V, to a straightedge construction
of the center of c. But the center of ¢ is not the projection from V of the center
of the base.

2. (a) By Problem 4.6.1 draw through P lines parallel to the diagonals of the

given parallelogram to cut AB in C and D. By Problem 4.6.1 draw CE parallel
to PD and DE parallel to PC, and let PE cut CD in M. Now, by Problem
4.6.1, draw through P a line parallel to AB.
(b) By part (a) draw three chords parallel to one diagonal of the parallelogram.
Now, by connecting opposite ends of pairs of these chords, obtain two points
on the diameter of k that is perpendicular to the threechords; draw this diam-
eter. Carry out a similar construction with respect to the other diagonal of
the parallelogram.

3. (a) Take M and N, any two points on the inner circle and such that MN is
not a diameter of the circle. By Problem 3 (b), Section 4.6, draw the tangents
to the inner circle at M and N. We now have, in the outer circle, two bisected
chords in two different directions. This allows us (by Problem 4.6.1) to
construct a parallelogram with sides parallel to these bisected chords. Now use
Problem 2 (b), Section 4.7.

(b) Let P be the point of contact. Draw any three secants 4A4°, BB’, CC’
through P, where A, B, C are on one circle and A4’, B’, C’ are on the other.
Then BA is parallel to B’A’, and BC is parallel to B’C’. Now use Problem
2 (b), Section 4.7.

(c) Let the two circles intersect in P and Q. Draw any two secants MQT and
UQS, where M and U are on one circle and 7 and S are on the other. Next
draw secants TPV, SPN, where V and N are on the other circle. Then MN
is parallel to VU. Similarly obtain another pair of parallel lines, and use
Problem 2 (b), Section 4.7.

4. Draw any two secant lines through the center of similitude and by connecting
pairs of corresponding points of intersection of these secant lines with the
circles obtain two pairs of parallel lines. Now use Problem 2 (b), Section 4.7.

5. (a) Take any point P on AB and with the parallel ruler draw any pair of parallel
lines PP’, MM’ the width of the ruler apart. Let MM’ cut ABin M. Then draw
NN’ parallel to PP’ and the width of the ruler from PP’. Let NN’ cut ABin N.
Then P is the midpoint of segment MN.

(b) Use Problem 4.6.1.
(c) Suppose P is on AB. Draw any line P’P through P and then draw M'M
and N’N parallel to P’P the width of the ruler from P’P. Then draw NN”
not parallel to P’P and the width of the ruler from P. Let NN"meet M’MinR.
RP is the required perpendicular.

Suppose P is not on AB. Take any point Q on AB and (by the above case)
draw QR perpendicular to AB. By part (b) draw PT parallel to RQ. Then PT
is the required perpendicular.
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12.

(d) Let k£ denote the width of the ruler. Take any point C’ and draw C’D’
parallel to CD. Take D’ such that C’'D’ = k; this can be done by erecting a
perpendicular to C’D’ at C’, and then using the ruler to obtain D’. Draw CC’
and DD’ to meet in S. Draw C’A’ parallel to CA to meet SA4 in A’. Then draw
A’B’ parallel to AB. We have now reduced the problem to that where CD = k.
We proceed, then, with this special case.

Take any point P on AB outside the circle C(D). Draw PT at distance &
from C; PT is then a tangent to C(D). Draw CT perpendicular to PT. Draw CR
perpendicular to 4B, TR perpendicular to PC. Through R draw RX and RY
at distance k from C to cut AB in the required points X and Y. The proof is
easy. TR is the polar of P, hence AB is the polar of R. Hence, since RX and RY
are tangent to C(D), X and Y are the required points of intersection of 4B and
C(D).

(e) We may proceed exactly as in Problems 4.6.5 and 4.6.6.

. ProoF I. Let C be a circle inside S and such that G’, 4’, R’ lie outside C. Invert

G’, A’ in C, obtaining G”, A” inside C. Find R” (also inside C) and then invert
R” in C to obtain R’.
Proor II. Take point P inside S as center of homothety and construct, from
G’, A, loci G”, A” homothetic to G, 4, but lying entirely inside .S. Now construct
R’ (also inside S) and then obtain R’.

1 1

(a) Use the fact that the sum of the infinite geometric series ¥ — ¥ + & — -
+ - - - is . For another asymptotic Euclidean solution of the trisection problem
see Problem 4134, The American Mathematical Monthly, Dec. 1945.

14. See Problem 8, Section 1.7.

15. (a) Note that X OLP = X ORL + ¥XLOR and XOPQ = XOPL + XLPQ.
But XOLP = XOPQ and XORL = X OPL. Therefore ¥ LOR = ¥ LPQ
= X LOQ = 30° and ¥ LKQ = 2(xLOQ) = 60°. It follows that RL = QL
= KL.

Section 5.2

1. In its movement, line s can pass over only one vertex of P at a time.
3. A vertex V of a polyhedron P is a projecting vertex if there exists a plane which

separates V from all the other vertices of P.

4. Devise a space analog of the proof suggested in Problem 1, Section 5.2.

Section 5.3

27. Let AB and A’B’ be a corresponding pair of congruent arcs on the boundary of

P. We may connect the ends 4 and B of arc 4B by a polygonal path p such
that the region K bounded by arc AB and path p contains nothing but interior
points of P, while the congruent region K’ bounded by arc A’B’ and the corres-
ponding path p’ contains nothing but exterior points of P. Let us cut off region
K and place it on K’. Doing this for all corresponding pairs of congruent arcs
on the boundary of P converts P by dissection into a polygon. Q may be treated
similarly. We then apply Theorems 5.3.6 and 5.1.3.
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Section 5.4

4. Note that the proof usually given in high school solid geometry texts is in-
complete.

Section 5.5

1. Connect the midpoint of one edge of the regular tetrahedron to the ends of the
opposite edge. If we take an edge of the tetrahedron as 2, the isosceles triangle
formed has base 2 and sides+/3. The vertex angle 0 of this triangle measures
the dihedral angles of the tetrahedron. But sin(§/2) = 1/4/3, whence cos 0
=1 — 2 sin?(4/2) = 1/3.

2. See a high school solid geometry text.

3. (a), (b), (c) See a high school solid geometry text.

Section 5.6

2. Such a dissection is indicated in the proof of Theorem 5.6.5.

3. See the proof of Theorem 5.6.5.

4. This follows from Theorem 5.6.5, since P and Q are equivalent.
6. See a high school solid geometry text.

Section 5.7
2. If the points coincide, then i — j = 2kn for some integer k. But, since 7 is
irrational, this is impossible.
3. A good question.

5. Let M, be the midpoint of 4B, M, the midpoint of M, B, M, the midpoint of
M, B, etc. Denote by E the set of all points on [4B] with the exception of points
A, B, My, M,, M5, .... Then we have

[ABl=EUVAVBUM UM,UM;uU...,
(ABl=EVUBUM, UM, UM uU...,
[ABy=EVAUM, UM, UM;uUL...,
(AB)=EUM, UM, UM;uU ..

It is now apparent how we may put the points of any one of the four segments in
one-to-one correspondence with the points of any other one of the four segments.

6. (a) In fact, R(0O,0) carries z into z(cos 6 + isin 0) = ze's.
(b) Use part (a) and mathematical induction.
(©) If E; N E, # 9, then there exist polynomials P and Q in €', having integral
coefficients, such that Pe' = Q + 1.
(d) Assuming the contrary we have, by part (c), that ¢’ satisfies a polynomial
equation with integral coefficients. But this is impossible, since ¢' is transcen-
dental.

7. Yes, by the Banach-Tarski paradox.
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Section 5.8

1.

11.

12.

13.
14.

15.
16.

Since (see Figure 5.8a) right triangles DJE and GKF are congruent, we have
DJ = GK and JE = KF. This is ample to guarantee that the reassembled
figure is a rectangle R. But R must be a square since one side is the square
root of the area of R.

. In Figure 5.8a, take E’ and F’ as the midpoints of A’B’ and D’C’. Mark

off E'G’ = 3-Y%(A’B’). Mark off FFH' = H'K' = E'G".

. Draw the regular octagon and the equivalent square (see Figure 5.8c). With

radius equal to the apothem of the octagon, draw a circle concentric with the
square, and take alternate intersections of the circle with the square as the cut
points 4, B, C, D. The corresponding set of points in the octagon will be the
set of midpoints 4’, B’, C’, D’ of alternate sides. Now rotate the boundary
A’B’ so that A’ and B’ fall on B and A, etc. The sides of the octagon become
cut lines of the square, and the sides of the square are the cut lines of the octagon.

. Dissect the smallest square of the rectangle into squares as shown in Figure

5.8¢. Repeat the process.

. Start with successive squares of sides 36, 25, 16, 28, 33 around the perimeter of

the rectangle.

. A pair of diagonally opposite corner squares are of the same color, say red.

1t follows that in the remaining piece there are more black squares than red
ones. But a domino requires one square of each color.

. See, e.g., pp. 199-207 of Maurice Kraitchik, Mathematical Recreations.
10.

The figure has axial symmetry and contains 6 congruent rhombuses of one
shape, 6 congruent rhombuses of a second shape, and 3 congruent rhombuses
of a third shape.

Employ mathematical induction. See Problem E 468, The American Mathe-
matical Monthly, Feb. 1942.

(b) One obtains Perigal’s dissection of Figure 5.1c.

[V3(a® + b* + c?)/4 + 3ab/2)/2.

(a) See Problem E 1406, The American Mathematical Monthly, Nov. 1960.
(b) See V. E. Hoggatt, Jr. and Russ Denman, ‘ Acute isosceles dissection of
an obtuse triangle,” The American Mathematical Monthly, Nov. 1961, pp.
912-913.

See Item 5.8.16.

(a) Divide the cube into 8 smaller cubes by the three planes midway between
the pairs of opposite faces; divide one of the smaller cubes similarly into 8
still smaller cubes. Carry out the dividing operation ¢ times. Finally divide
one of the smallest cubes into & subcubes.

(b) Note that 55 =20 + 5(7), 56 =49 + 7, 57 =1 + 8(7), 58 =51 + 7,
59 =38 + 3(7), 60 =39 + 3(7), 61 =61 + 0(7).

Section 6.1

2.

(a) The sides of the angle which the vanishing points of m and n subtend at V'
are parallel to m’ and n’.
(b) Use part (a).
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3. (a) Denote the required center of perspectivity by V. Then (by Problem 2 (a),
Section 6.1) X AVC = X A'B'C’ = aand X DVF = X D’E’F’ = B. To find ¥V
draw on AC an arc of a circle containing angle « and on DF (on the same side
of I) an arc of a circle containing angle B. Since 4, C, D, F are in the order
A, D, C, F, these arcs must intersect; let X be such an intersection. Now rotate
X about line ADCF out of plane = to a position V. Then if we project plane
7 from center ¥ onto a plane parallel to the plane of ¥ and / the problem is
solved.

(b) Not necessarily—only so long as the circular arcs described in the solution
of part (a) intersect one another.

4. Let AB and CD intersect in U, AD and BC in V, AC and BD in W. By Problem
3, Section 6.1, project line UV to infinity and angles ¥4U and LWM into right
angles.

5. Draw any line cutting the rays of the pencil U(AB,CD) in (ab,cd). Let U’
(A’B’, C’D’) be the projection, under any perspectivity, of the pencil U(4B,CD),
and let (a’b’,c’d’) be the projection of (ab,cd). Then U(AB,CD) = (ab,cd)
= (a'b',c’d’) = U(A'B’,C’'D’).

6. Let V be the center of perspectivity and let X and Y’ be the feet of the per-
pendiculars from ¥ on 7 and #’. Then the bisectors of X XVY’ cut 7 and =’
in the isocenters of the perspectivity. Suppose, for example, the internal
bisector of X XVY’cuts 7 and #’ in E and E’. Then XE and E’Y” intersect on the
axis of perspectivity in a point K, and EK = E’K. Let the sides of an angle at
E cut the axis of perspectivity in L and M. Then < LEM maps into < LE’M.
But triangles LEM and LE’M are congruent, etc.

7. The isolines are the reflections of the axis of perspectivity in the vanishing lines
of the two planes.

Section 6.2

1. Project ABB’A’ into a square (by Problem 4, Section 6.1).
2. (b) The line at infinity.
(c) Itself; in fact each point of line b maps into itself.
(d) A line parallel to lines a and b.
(e) Itself.
(f) A line parallel to lines a and b.
(g) Let m be a line not parallel to lines a and b. Then m cuts a and b in points
U and V. m’ is the line through V parallel to OU.
(h) At O.
(i) Let ¢ be any line through the intersection of lines a and 5. Let OA4 cut ¢
in Q and QB cut PO in P’. La Hire’s mapping may be obtained from this
generalization by projecting line ¢ to infinity.

3. Project line PQ to infinity and then use Problem 14, Section 2.4.
4. The expression is an A-expression.
5. The expression

(MN)(MN"YM’P)YM’P’)|(MP)(MPY(M’NYM’'N’)

is an h-expression. Now project ABCD into a parallelogram.
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Section 6.3

1. (b) Suppose there are two parallel tangents a and b, touching the parabola at
A and B respectively. Then the pole of AB is the ideal point C of intersection
of a and b. Now the line s at infinity touches the parabola and passes through C.
It follows that a, b, s are three distinct tangents to the parabola through C.
This is impossible.

(¢) Tis the pole of PQ. Therefore PQ passes through the pole U of TV and
(PQ,VU) = —1. Since V is the midpoint of PQ, U is the point at infinity on
PQ. Let TV cut the parabola in R and S. Then the tangents at R and S intersect
in U. It follows, by part (b), that S must be an ideal point. But (TV,RS) = —1,
whence R is the midpoint of TV.

(d) Let T be any point and ¢ its polar; let S be the ideal point on the parabola
and let ST cut the parabola in R and cut ¢ in V. Then, since (V'T,RS) = —1,
it follows that R is the midpoint of V'T. Now ¢, the tangent at R, and the tangent
at S (that is, the line at infinity) all pass through the pole U of V'T. It follows
that U is a point at infinity, and the tangent at R is parallel to ¢. But the tangent
at R is the line midway between T and ¢.

(e) This is a consequence of part (d).

2. (a), (b), (c) The line at infinity touches, intersects, and fails to intersect a
parabola, a hyperbola, and an ellipse respectively.
(e) For the polar of the center of the parallelogram is the lire at infinity.
(f) Let W be the other point of intersection of CT with the conic. Then
(uw,Tv) = —1.

3. (a) For a diameter is the polar of the point at infinity in the direction of the
family of parallel chords.
(b) The diagonals of the quadrilateral formed by the points of contact are
diameters (since their poles are at infinity) and hence bisect each other; the
quadrilateral is thus a parallelogram. It follows that the poles of the diagonals
of the circumscribed parallelogram are at infinity, and these diagonals are then
diameters.
(c) Let P, Q be any two points on the conic and let ¥ be the midpoint of PQ.
If C is the center of the conic, CV is the diameter bisecting chords parallel to
PQ. Thus CV and PQ are parallel to a pair of conjugate diameters, and are
thus perpendicular to one another. Since PV = V(Q, it follows that CP = CQ,
and all radii of the conic are equal.

5. (a) Use Theorem 6.3.12.
(b) By part (a), the diameter through the midpoint of QQ’ also bisects RR'.
(c) The tangent is parallel to the diameter conjugate to the diameter through
the point of contact of the tangent. Now use part (a).

Section 6.4

1. See Theorem 2.8.4.

2. Let u be the polar of U and let PQ and RR’ cut 4 in V and W respectively.
Since (PQ,UV) = —1, u is the exterior bisector of angle PTQ, and is therefore
perpendicular to TU. But (RR,UW) = —1. It follows that TU and u are
the bisectors of angle RTR’.
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. Let AB, CT intersect in R. Then the polar of R passes through C and through

the harmonic conjugate of R for AB; and hence is CD. Since R is on AB, it
follows that CD passes through the pole of AB.

4. TN and TR are conjugate lines. Now use Theorem 6.3.12.

. If R is the pole of PQ, then the polar of U is the line through R parallel to AB.

6. Let TR cut PQ in V and let U be the point at infinity on PQ. Then (PQ,VU)

= —1, whence also (MN,RU) = —1.

7. R, S, T lie on the polar of the point of intersection of BC and AD.

. (a), (b) See Problem 3, Section 4.6.

9. (a), (b), (c) These are special cases of Pascal’s Theorem where certain of the

10.

11.
12.

13.

14.

15.

six vertices of the inscribed hexagon coalesce.

(a), (b), (c) These are special cases of Brianchon’s Theorem where certain of
the six sides of the circumscribed hexagon coalesce.

Parallel the proof of Theorem 6.4.5.

Apply Carnot’s Theorem to triangle ABC; or project into a circle and employ
the cross ratios (BC,A;A4,) and (AC,B;B,).

Use Ceva’s Theorem for triangle ABC and points X, Y, Z, and then apply
Carnot’s Theorem.

Let AD, BE, CF intersect in G. Project (see Theorem 6.1.7) the figure so that G
becomes the centroid of ABC. Then D, E, F are the midpoints of BC, CA, AB
respectively, and A’D, B’E, C’F are diameters of the conic.

Let L be the pole of MN and let ML and NL cut ON and OM respectively in
S and T. Then (OP,TM) = —1 and (OQ,NS) = — 1. Therefore PQ, TN, MS
are concurrent. That is, PQ passes through L.

Section 6.5

2.

Using the lettering of Figure 2.6b we have A(EB,DF) = (EL,DH) = (EM,KF)
= C(EB,DF). Since no three of the points A, B, C, D, E, F are collinear,
A(C) does not correspond to C(A). It follows, by Theorem 6.5.3, that E, B, D, F
lie on a proper conic passing through 4 and C.

Or, denote the vertices of the hexagon by 1, 2, 3, 4, 5, 6, and let p be the inter-
section of lines 61 and 34, g the intersection of lines 12 and 45, r the intersection
of lines 23 and 56. By Theorem 6.5.7 there is a unique proper conic ¢ passing
through 1, 2, 3, 4, 5. Let 6" be the other point of intersection of ¢ with 5r.
Then, by Pascal’s Theorem applied to hexagon 123456’, 6’1 must pass through p.
It follows that 6 = 6.

. Let the conic determined by 4, 45, By, B,, C, cut AB in C3. Apply Carnot’s

Theorem and show that C; = C,.

. Let ABC be the triangle. Let the parallel to BC through a point G cut ABin C,

and AC in B,; let the parallel to CA through G cut BC in A, and BA in C;;
let the parallel to AB through G cut CA in B; and CB in A,. Consider the A-
expression

(AC,)(AC,)(BA,)(BA,)(CB,)(CB,)/

(AB1)(AB;)(BC,)(BC;)(CA)(CA2).
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Now (by Theorem 6.1.7) project ABC and point G into a triangle and its cen-~
troid. In the projected figure the h-expression has the value 1. Now apply
Problem 3, Section 6.5.

5. (a) Let the five points be 4, B, C, D, E. Use Pascal’s Theorem on the hexagon
ABCDEF, where F = A, to obtain the tangent at A.

(b) Let the four points be 4, D, E, F, where we are given the tangent at A.
Draw any other line through 4. To find the intersection C of this line with the
conic, use Pascal’s Theorem on hexagon ABCDEF, where B = A.

(c) Let the three points be 4, B, C. Use Pascal’s Theorem on the hexagon
ADBECF, where D = A, E= B, F= C.

6. Use Carnot’s Theorem and Problem 3, Section 6.5.

7. For O(T) = (P) = S(P).

8. For C(R") = C'(R") = C'(P) = C(R) = C'(R).

9. For U(JK,LM) = U(AB,CD) = V(AB,CD) = V(JK,LM).

Section 6.6

1. Denote the sides of the hexagon by 1, 2, 3, 4, 5, 6, and let p be the join of points
61 and 34, g is the join of points 12 and 45, r the join of the points 23 and 56.
By Theorem 6.3.14 there is a unique proper conic ¢ touching 1, 2, 3, 4, 5. Let 6’
be the other tangent to ¢ from point 5r. Then, by Brianchon’s Theorem applied
to hexagon 123456’, point 6’1 must lie on p. It follows that 6 = 6.

2. (a) Let the five tangents be a, b, c, d, e. Use Brianchon’s Theorem on hexagon
abcdef, where f = a, to obtain the point of contact of a.

(b) Let the four tangents be a, d, e, f, where we are given the point of contact
of a. Take any other point on a. To find the tangent ¢ from this point to the
conic, use Brianchon’s Theorem on hexagon abcdef, where b = a.

(c) Let the three tangents be a, b, ¢. Use Brianchon’s Theorem on the hexagon
adbecf, where d =a, e = b, f = c.

3. See Problem 8, Section 2.7.

4. See Problem 8, Section 2.7.

5. Let S and S’ be points of contact with ¢ and ¢’ of a common tangent to cand ¢’.
Then S(P) = (R) = S’(P). But S(S”) corresponds to S’(S).

6. Let AR and BS intersect in 7. Then A(T) = A(R) = (R) =(S) = B(S) = B(T),
and T traces a conic passing through A and B. Taking R = S = O, we see
thatT = O, and O is also on the conic.

7. (a) Let the triangle be ABC, where BC, CA, AB pass through the fixed points

D, E, F respectively, and B and C lie on fixed lines b and ¢ respectively. Now
F(A) = F(B) = D(B) = D(C) = E(C) = E(A), and A lies on a conic through
FEand F.
(b) Let the triangle be ABC, where A, B, C lie on fixed lines a, b, ¢ respectively,
and AB and AC pass through fixed points F and E respectively. Now (B)
= F(B) = F(A) = E(A) = E(C) = (C), and BC touches a conic tangent to
bandc.

8. Let A’C’ cut BA and BC in D and E, and let AC cut B’A’ and B’'C’ in D’ and

E’. Then (A’C’,DE) = B(A’C’,AC) = B’(A’C’,AC) = (D’E’,AC). Therefore
A'D’, C'E’, DA, EC touch a conic tangent to A’C’ and AC.
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Section 6.7

1.

(a) Two points P and Q on a tangent m to a conic.
(b) A line m cutting a conic in two points P and Q, two tangents p and g to
the conic intersecting in a point N on m.

2. A complete quadrilateral.

10.
11.

12.

13.

14.

15.

. If lines x, y, u are concurrent and if x(ab,cu) = y(ab,cu), then lines a, b, ¢ are

concurrent.

. abc is a triangle, / a fixed line through point ab, o a variable line through point

cl. If p is the join of ao and cb, and q is the join of bo and ca, then the join of
pq and ab is a fixed line m.

Or: If ABC is a triangle, F is a fixed point on AB, and a variable line through
Fcuts BCin D and CA in E, then DA and BE intersect on a fixed line through
C.

. Let P be the pole of p for proper conic ¢, whose reciprocal is proper conic ¢’.

From an arbitrary point Q of p, external to ¢, draw the two tangents ¢, u to c.
Denote PQ by g. Then (pg,tu) = — 1. Now if P’, Q’, T’, U’, q’, p’ are the recip-
rocals of p, q, t, u, Q, P, it follows that P’, Q’, T’, U’ lie on q’ and (P'Q’,T'U’)
= —1. But T, U’ are points of ¢’. Hence Q’ lies on the polar of P’ for ¢’.
But Q’ lies on p’. Thus p’ and the polar of P’ with respect to ¢’ both coincide
with the locus of Q’, and so are identical. It follows that p’ is the polar of P’ for
conic ¢’.

Use Problem 9, Section 6.7.

A hexagon is inscribed in a conic if and only if the points of intersection of the
three pairs of opposite sides are collinear.

(a) Let m be the straight line and let M and M’ be the poles of m for the two
conics. Let 4 be a variable point on 77 and let a and @’ be the polars of 4
for the two conics. As 4 moves along m, p and p’ rotate about M and M’. But
(@) = (A) = (a’), whence the intersection of a and a’ traces a conic through M
and M".

(b) If a line rotates about a fixed point, the join of the poles of the line for two
given proper conics envelops a conic.

(a) Let ¢ denote the proper conic through A4, B, C, D, E. By Pascal’s Theorem
find A’, where PA cuts ¢ again. Similarly find B’, where PB cuts ¢ again.
Let AB’, A’B intersect in U, and let AB, A’B’ intersect in V. Then UV is the
sought polar.

(b) Dualize the construction of part (a).

(a) Let P be the moving point and let U and ¥ be fixed points on the same conic.
Let p, u, v be the polars of P, U, V for the second conic. Now u(p) = U(P)
= V(P) = v(p). It follows that p envelops a conic.

(b) The pole with respect to a second conic of a variable tangent to a first conic
traces a third conic.

(a) Let A travel along line / and let L be the pole of / for the first conic. Then a
passes through L. Let [’ be the polar of L for the second conic. Then 4" lieson /”.
(b) The pole of a line a with respect to one conic is 4, and the polar of 4 with
respect to a second conic is a’. As a rotates about a fixed point, a’ also rotates
about a fixed point.
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16. (a) Use Ceva’s Theorem and the converse of Carnot’s Theorem (Problem 3,
Section 6.5).
(b) The joins of the vertices of a triangle to the points of intersection with the
opposite sides of two fixed transversals are all tangent to a conic.
17. (a) This is a special case of the converse of Brianchon’s Theorem (Problem
1, Section 6.6).
(b) If L, M, N are three collinear points on the sides BC, CA, AB of a triangle
ABC, there is a proper conic touching AL, BM, CN at A, B, C respectively.
Section 6.8
3. Angle o of Figure 6.8a can be continuously altered.
4. There are two spheres inscribed in the cone and passing through the given
point, and then two planes tangent to these spheres at the given point.
5. The angles « and B of Figure 6.8a are the same for the two parallel sections.
6. Choose a of Figure 6.8a so that sin a/sin 8 = e, the eccentricity of the given
ellipse, etc.
7. The sum of the distances is (referring to Figure 6.8b) VE; + VE,.
Section 6.9
1. Use Theorem 6.9.2.
2. Orthogonally project the ellipse into a circle.
3. (3ab+/3)/4.
4. (47K+/3)/9.
5. Each of two perpendicular diameters of a circle bisects all chords parallel
to the other.
6. Use Problem 5, Section 6.9.

7. Use Problem 5, Section 6.9.
8. Draw the diameter from the given point and find the trisection point of this

11.
12.
13.

14.

diameter that lies nearer the other end. The side of the triangle opposite the
given vertex passes through this trisection point and is parallel to the tangent
to the ellipse at the given vertex.

. Orthogonally project the ellipse into a circle.
10.

Orthogonally project the ellipse into a circle. Note that in the projected figure
(OA)OB)/(O’A’)(O’B’) = (OC)OD)/(0’C’)(0’D’). This same relation holds
(by Theorem 6.9.1 (5)) for the original figure. Etc.

Orthogonally project the two ellipses into two concentric circles.
Orthogonally project the ellipse into a circle and use Problem 5, Section 6.9.

Orthogonally project the ellipse into a circle, of center O’, say. Then the circle
on O’T’ as diameter passes through P’, Q’, V', whence X T'V'Q’ = X T'P'Q’.
Etc.

Let E be the ellipse inscribed in a given parallelogram and touching the sides
at their midpoints. Orthogonally project E into a circle. The parallelogram then
projects into a square. The circle is the maximum ellipse that can be inscribed
in the square.
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15.
16.
17.

18.

19.

20.

Orthogonally project the ellipse into a circle.

ab(v/3 — m/2).

Lines drawn from any point on an ellipse parallel to the diameters of the
ellipse which bisect the sides of an inscribed triangle cut the respective sides
of the triangle in three collinear points.

The center of any ellipse inscribed in a quadrilateral is collinear with the mid-
points of the diagonals of the quadrilateral.

A chord AQ of an ellipse cuts the diameter of the ellipse conjugate to the
diameter through 4 in point R; CP is the radius of the ellipse parallel to 4Q.
Then (AQ)AR) = 2(CP)>.

First consider triangles whose bases lie on the line of intersection of the two
planes.

Section 7.1

1.

To deduce Euclid’s fifth postulate, let AB and CD be cut by the transversal ST,
and suppose X BST + < DTS < 180°. Through S draw QSR, making ¥ RST
+ X DTS = 180°. Now apply, in turn, I 28, Playfair’s Postulate, I 17.

. (@), (b) It is easily shown that, given Playfair’s Postulate, each of (a) and (b)

follows, since the contradiction of either (a) or (b) contradicts Playfair’s
Postulate. Conversely, given either (a) or (b), the Playfair Postulate follows,
since the contradiction of the Playfair Postulate contradicts each of (a) and

b).

. See Wolfe, Introduction to Non-Euclidean Geometry, pp. 21-23.
. Try the same experiment and reasoning on a spherical triangle, using a great

circle arc in place of the straightedge.

. Let P be above Q and let PM be a variable ray rotating counterclockwise about

P, starting from PQ as initial position. Though there may be a first position of
PM that fails to intersect QB, there is no final position of PM that intersects

0B.

6. The proof assumes that the noncongruent triangles AEO and ADC are similar.

. Each of Propositions I 27 and I 28 implies the other. Let P be a given point

not on a given line m. Through P draw a line » cutting line m. Now through P
draw a line p such that a pair of corresponding angles formed with p and m
by n are equal. By Proposition I 28, p is parallel to m.

. (a) Let ABCD be the Saccheri quadrilateral, where angles 4 and B are right

angles and 4D = BC. Draw the diagonals AC and BD and show that triangles
DAB and CBA are congruent (sas), and then that triangles ADC and BCD are
congruent (sss).

(b) Using the notation of the solution of part (a), let M and N be the midpoints
of AB and CD. Draw AN and BN and show that triangles ADN and BCN
are congruent (sas). Next show that triangles AMN and BMN are congruent
(sss). This makes MN perpendicular to AB. Similarly prove MN is perpen-
dicular to CD by drawing DM and CM.

(c) Drop the perpendicular from the third vertex upon the line joining the
midpoints of two sides, and prove some right triangles are congruent.
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10.
12.

13.

14.
15.

(d) Using the solution of part (b), let R and S be the midpoints of AD and BC.
Then ABSR is a Saccheri quadrilateral and MN perpendicularly bisects RS.

. Using the notation introduced in the solution of Problem 8 (b), Section 7.1,

MBCN is a Lambert quadrilateral and is half the Saccheri quadrilateral ABCD.
Consult a high school solid geometry text.

(a) Angle A4 is less than 60°.

(b) Carrying out the construction » times we obtain a triangle containing the
given triangle at least 2" times, and therefore having a defect at least 2~
times the defect of the given triangle. By taking » sufficiently large we can then
obtain a triangle whose defect is greater than 180°. But this is absurd.

(b) Let ABC be a triangle having the sum of its angles equal to two right
angles. If ABC is not already right isosceles, draw the altitude BD. If neither
of the resulting triangles is right isosceles, mark off on the longer leg of one of
them a segment equal to the shorter leg. By part (a), the resulting isosceles
right triangle has the sum of its angles equal to two right angles. By putting
together two such congruent isosceles right triangles, a quadrilateral can be
formed having all its sides equal and all its angles right angles. By putting
together four such congruent quadrilaterals, a larger quadrilateral of the same
kind can be formed. By repeating the last construction enough times, one can
obtain a quadrilateral of the same kind having its sides greater in length than
any given segment. A diagonal of this last quadrilateral will give an isosceles
right triangle of the type desired.

(c) Let ABC be any right triangle, right-angled at C. By part (b), there exists
an isosceles right triangle DEF, right-angled at E, having the sum of its angles
equal to two right angles and its legs greater than either of the legs of triangle
ABC. Now produce CA and CB to A’ and B, respectively, so that CA” = CB’
= ED. Then triangles DEF and A’CB’ are congruent. Draw A’B, and apply
part (a) to triangle A’CB’. The extension to any triangle ABC is now easily
accomplished by dividing ABC into two right triangles by one of its altitudes.

See Wolfe, Introduction to Non-Euclidean Geometry, pp. 23-24.
See Wolfe, Introduction to Non-Euclidean Geometry, p. 25.

Section 7.3

1.
2.

Draw PQ perpendicular to AB and use Theorem 7.2.4.

Draw the line through the midpoint of the finite side of an isosceles limit triangle
and parallel to the other two sides. The isosceles limit triangle is divided into
two congruent limit triangles (Theorem 7.3.3), and it follows that the drawn
parallel is perpendicular to the finite side. Now consider two isosceles limit
triangles having equal finite sides and divide each of the triangles into a pair of
congruent right-angled limit triangles as above. Any one of the limit triangles
of one pair is then congruent to any one of the other pair (Theorem 7.3.3),
and the angles of one isosceles limit triangle are equal to those of the other.

. Use Theorem 7.3.2.

4. The two lines do not intersect (by Proposition I 28), and they are not parallel

(by Problem 3, Section 7.3).

. Draw A’E’ parallel to B’D’ and Use Theorem 7.3.3.

Suggestions for Solutions of Selected Problems

419



6. Let AX and BY be the parallel sides of an isosceles limit triangle and let M be
the midpoint of the finite side AB. In the solution of Problem 2, Section 7.3, it is
shown that the perpendicular bisector MZ of AB is parallel to AX and BY.
Let Pbeany point on MZ and let R and S be the feet of the perpendiculars from
Pon AX and BY respectively. Now triangles AMPand BM P are congruent (sas),
whence PA = PB and X MAP = X MBP. 1t follows that X RAP = X SBP
and right triangles PRA and PSB are congruent, whence PR = PS.

7. Use Theorem 7.3.3.

8. Let the two limit triangles be XABY and UCDV, where ¥B = ¥ D and
AB > CD. Mark off BE = DC on BA and draw EZ parallel to AX and BY.
Then limit triangles ZEBY and UCDV are congruent (Theorem 7.3.3) and
X UCD = X ZEB > ¥ A (Theorem 7.3.2).

9. (a) & = log cot [T1(4)/2].
10. (b) Absolute.

Section 7.4

1. Let ABCD and A’B’C’D’ be two Saccheri quadrilaterals with equal bases AB
and A’B’ and equal summits DC and D’C’. Suppose AD > A’D’. Mark off AD”
on AD equal to A’D’, and BC” on BC equalto B'C’. Then ABC"D" and A’B’'C’D’
are congruent and D"C” = D’C’. Let the perpendicular to AB at its midpoint M
cut D”"C” in P and DC in Q. Then (Theorem 7.4.3) PQ perpendicularly bisects
both D”C” and DC. It follows that PQCC” is a Saccheri quadrilateral with base
PQ and summit C”C, and angles QCC” and PC”C must be equal acute angles
(Theorem 7.4.2). But this is impossible since angle BC”P is acute (Theorem
7.4.2).

2. Let ABCD and A’B’C’D’ be two Saccheri quadrilaterals with equal bases 4B
and A’B’ and equal summit angles. Suppose AD > A’D’. Mark off AD” on
AD equal A’D’, and BC” on BC equal to B’'C’. Then ABC”"D" and A’B'C’'D’
are congruent, whence angles ADC, AD"C”, BCD, BC”D" are all equal. But
then the sum of the angles of quadrilateral D"C”"CD is 360°, which is im-
possible.

3. In quadrilateral ABCD, let XA = ¥ B = 90° and ¥ D = ¥ C. Suppose AD >
BC. Mark off AD’ on AD equal to BC. Then ABCD’ is a Saccheri quadrilateral
and X AD'C = ¥ BCD’ < ¥ BCD = X ADC. But this is impossible.

4. Otherwise there would be a contradiction of Theorem 7.4.5.

5. Dissect the convex polygon into n — 2 triangles by diagonals through a chosen
vertex.

Section 7.5
3. If AD > BC, mark off AE = BC on AD. Then ¥ BCD > ¥ BCE = X AEC >
X ADC. Etc.

4. (a) Put two congruent Lambert quadrilaterals together to form a Saccheri

quadrilateral.
(b) Use Problem 3, Section 7.5.
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5.

7.

By drawing the line connecting the midpoints of the summit and base, and
applying Problem 3, Section 7.5, we see that the summit is greater than the base.

. Let ABCD be the given Saccheri quadrilateral, with base AB. Let E and F be

the midpoints of AD and BC and let G and H be the midpoints of 4B and DC.
Then ABFE is a Saccheri quadrilateral. Therefore GH, which is perpendicular
to AB at G, must be perpendicular to EF. The second part of the problem now
follows from Theorem 7.5.6.

In Figure 7.4d, 2LM = DE. But, by Problem 5, Section 7.5, DE < AB.

Section 7.6

1.
3.

In the model, each line must pass through the pole of the other.

In the model, two lines are conjugate to the same third line if and only if they
pass through the pole of the third line.

4. Use Theorem 3.10.6.

. In the model, we must project m on n from the pole of ».

7. In the model, let the hyperparallel lines @ and b cut K in 4 and B and in C

and D respectively. Consider the lines AD, BC, AC, BD.

12. By Pascal’s mystic hexagram theorem.
13. This is an easy consequence of Pascal’s mystic hexagram theorem.
Section 7.8
3. (a) Apply transformation S to the segment 4B, taking O as center and ¥ BOC
as angle. Then B will map into C and A4 into D’, where £ A0D’ = £ BOC
and AD’ is perpendicular to OD’. Thus segment AB maps into segment D’C,
and segment OA into segment OD’. But the right angle OA4B, one side of which
passes through the center O, must map into a right angle one side of which
passes through O. It follows that X OD’C = 90°. Etc.
3. (b) OABC is concyclic and X 0AC = X OBC.

4. (a) Let ABC and DEF be plane angles of the dihedral angle and let O be the

midpoint of BE. Construct ¥ A’EC’, the image of < ABC under the reflection
R(O). Then X A’EC’ = X ABC. Now X A’EO is the image of <X ABO under
R(0), whence A’E is perpendicular to EQ. It follows that 4’, E, D colline.
Similarly, C’, E, F colline, and X A’EC’ = X DEF.

Section 8.1

1.

(a) It is tacitly assumed, in Figure 8.1c, that F lies inside the triangle.
(b) It is tacitly assumed, in Figure 8.1d, that PF lies between PB and PF.
(c) It is tacitly assumed, in Figure 8.1e, that CD does not pass through B.

. (b) Let m be a line and P a point not on m. Associate with each line through P

its point of intersection with m.

(c) Let m be a line and P a point not on m. Let ¢ be the semicircle having P
as center and any convenient diameter parallel to m. Associate with each point
Q of ¢ the point Q" of m where PQ cuts m.
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3. Verification of the first four postulates presents little difficulty. To verify the
fifth postulate it suffices to show that two ordinarily intersecting lines, each
determined by a pair of restricted points, intersect in a restricted point. This
may be accomplished by showing that the equation of a straight line determined
by two points having rational coordinates has rational coefficients, and that
two such lines, if they intersect, must intersect in a point having rational co-
ordinates. For the last part of the problem, consider the unit circle with center
at the origin, and the line through the origin having slope one.

5. (a) Let the line enter the triangle through vertex A. Take any point U on the
line and lying inside the triangle. Let } be any point on the segment AC,
and draw line VU. By Pasch’s Postulate, VU will (1) cut AB, or (2) cut BC, or
(3) pass through B. If VU cuts AB, denote the point of intersection by W and
draw WC; now apply Pasch’s Postulate, in turn, to triangles VWC and BWC.
If VU cuts BC, denote the point of intersection by R; now apply Pasch’s
Postulate to triangle VRC. If VU passes through B, apply Pasch’s Postulate to
triangle VBC.

Section 8.2

1. (b) The janitor repaired the chairs.